On the magnetosensitivity of lipid peroxidation: two- versus three-radical dynamics

We present a theoretical analysis of the putative magnetosensitivity of lipid peroxidation. We focus on the widely accepted radical pair mechanism (RPM) and a recently suggested idea based on spin dynamics induced in three-radical systems by the mutual electron-electron dipolar coupling (D3M). We sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-06, Vol.21 (25), p.13526-13538
Hauptverfasser: Sampson, Chris, Keens, Robert H, Kattnig, Daniel R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a theoretical analysis of the putative magnetosensitivity of lipid peroxidation. We focus on the widely accepted radical pair mechanism (RPM) and a recently suggested idea based on spin dynamics induced in three-radical systems by the mutual electron-electron dipolar coupling (D3M). We show that, contrary to claims in the literature, lipid peroxides, the dominant chain carriers of the autoxidation process, have associated non-zero hyperfine coupling interactions. This suggests that their recombination could, in principle, be magnetosensitive due to the RPM. While the RPM indeed goes a long way to explaining magnetosensitivity in these systems, we show that the simultaneous interaction of three peroxyl radicals via the D3M can achieve larger magnetic field effects (MFE), even if the third radical is remote from the recombining radical pair. For randomly oriented three-radical systems, the D3M induces a low-field effect comparable to that of the RPM. The mechanism furthermore immunizes the spin dynamics to the presence of large exchange coupling interactions in the recombining radical pair, thereby permitting much larger MFE at magnetic field intensities comparable to the geomagnetic field than would be expected for the RPM. Based on these characteristics, we suggest that the D3M could be particularly relevant for MFE at low fields, provided that the local radical concentration is sufficient to allow for three-spin radical correlations. Eventually, our observations suggest that MFEs could intricately depend on radical concentration and larger effects could ensue under conditions of oxidative stress.
ISSN:1463-9076
1463-9084
DOI:10.1039/c9cp01746a