Simultaneous quantification of protein–DNA contacts and transcriptomes in single cells
Protein–DNA interactions are critical to the regulation of gene expression, but it remains challenging to define how cell-to-cell heterogeneity in protein–DNA binding influences gene expression variability. Here we report a method for the simultaneous quantification of protein–DNA contacts by combin...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2019-07, Vol.37 (7), p.766-772 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein–DNA interactions are critical to the regulation of gene expression, but it remains challenging to define how cell-to-cell heterogeneity in protein–DNA binding influences gene expression variability. Here we report a method for the simultaneous quantification of protein–DNA contacts by combining single-cell DNA adenine methyltransferase identification (DamID) with messenger RNA sequencing of the same cell (scDam&T-seq). We apply scDam&T-seq to reveal how genome–lamina contacts or chromatin accessibility correlate with gene expression in individual cells. Furthermore, we provide single-cell genome-wide interaction data on a polycomb-group protein, RING1B, and the associated transcriptome. Our results show that scDam&T-seq is sensitive enough to distinguish mouse embryonic stem cells cultured under different conditions and their different chromatin landscapes. Our method will enable the analysis of protein-mediated mechanisms that regulate cell-type-specific transcriptional programs in heterogeneous tissues.
scDamID&T combines DNA adenine methyltransferase-based labeling of protein–DNA contact sites with transcriptome sequencing to analyze regulatory programs in single cells. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/s41587-019-0150-y |