Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst
Advanced oxidation methods (e.g., ozonation systems) are used for control of recalcitrant pollutants in secondary petrochemical wastewater. For the selection of the optimal wastewater treatment method, we compared the reactivity characteristics of dissolved organic matter (DOM) in three common ozone...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2019-10, Vol.233, p.34-43 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advanced oxidation methods (e.g., ozonation systems) are used for control of recalcitrant pollutants in secondary petrochemical wastewater. For the selection of the optimal wastewater treatment method, we compared the reactivity characteristics of dissolved organic matter (DOM) in three common ozone treatment processes: single ozone, ozone/H2O2, and ozone/catalyst. The raw and ozonated DOM were fractionated into six fractions using ion exchange resins. Fluorescence spectroscopy and size exclusion chromatography were employed to characterize the fractions. The results showed that the single ozone system transformed hydrophobic components into hydrophilic components, but exhibited low mineralization ability. By contrast, the increase in hydrophilic acid fractions transformed from other fractions in the ozonation process were further mineralized in the ozone/H2O2 and ozone/catalyst systems. Ozone/H2O2 preferentially reduced hydrophobic bases, whereas ozone/catalyst preferentially reduced hydrophilic neutral components. However, ozone/H2O2 exhibited low selectivity in degrading organic compounds of different molecular weights. The highest total organic carbon (TOC) removal efficiency was achieved in the ozone/catalyst system, which promoted the transformation from fulvic acid- and humic acid-like substances into aromatic proteins and soluble microbial by-product-like substances. The single ozone system transformed high-molecular-weight compounds into low-molecular-weight compounds, resulting in an unsatisfactory TOC removal efficiency. By contrast, the ozone/catalyst system selectively removed the residual low-molecular-weight compounds in the reaction with ozone. This might have contributed to the high TOC removal efficiency of the ozone/catalyst treatment. These results can be used by other researchers and engineers to inform the selection of optimal ozone treatment based on wastewater characteristics.
[Display omitted]
•Ozone/catalyst showed better TOC removal performance of secondary petrochemical wastewater.•High selectivity in TOC removal from different DOM fractions was observed.•Ozone alone transformed HoA/HoB into HiN/HiA but had low mineralization ability.•Ozone/H2O2 and ozone/catalyst preferentially reduced HoB and HiN, respectively.•Each fraction was characterized by FTIR, EEM spectra and molecular weight distribution. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2019.05.207 |