Alternating-Direction Galerkin Methods for Parabolic and Hyperbolic Problems on Rectangular Polygons

Douglas and Dupont have formulated several alternating-direction Galerkin schemes on rectangular regions. In this paper it is shown that for certain time-dependent problems on rectangular polygons these schemes can be implemented with no more work than in the rectangular case; in fact the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM J. Numer. Anal.; (United States) 1975-04, Vol.12 (2), p.144-163
Hauptverfasser: Dendy, J. E., Fairweather, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Douglas and Dupont have formulated several alternating-direction Galerkin schemes on rectangular regions. In this paper it is shown that for certain time-dependent problems on rectangular polygons these schemes can be implemented with no more work than in the rectangular case; in fact the number of arithmetic operations required to complete one time step is O(N), where N is the number of unknowns at each time step. The results extend to systems of nonlinear parabolic equations and to problems on unions of rectangular parallelepipeds in Rn.
ISSN:0036-1429
1095-7170
DOI:10.1137/0712014