Alternating-Direction Galerkin Methods for Parabolic and Hyperbolic Problems on Rectangular Polygons
Douglas and Dupont have formulated several alternating-direction Galerkin schemes on rectangular regions. In this paper it is shown that for certain time-dependent problems on rectangular polygons these schemes can be implemented with no more work than in the rectangular case; in fact the number of...
Gespeichert in:
Veröffentlicht in: | SIAM J. Numer. Anal.; (United States) 1975-04, Vol.12 (2), p.144-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Douglas and Dupont have formulated several alternating-direction Galerkin schemes on rectangular regions. In this paper it is shown that for certain time-dependent problems on rectangular polygons these schemes can be implemented with no more work than in the rectangular case; in fact the number of arithmetic operations required to complete one time step is O(N), where N is the number of unknowns at each time step. The results extend to systems of nonlinear parabolic equations and to problems on unions of rectangular parallelepipeds in Rn. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0712014 |