Formation of aligned periodic patterns during the crystallization of organic semiconductor thin films

Self-organizing patterns with micrometre-scale features are promising for the large-area fabrication of photonic devices and scattering layers in optoelectronics. Pattern formation would ideally occur in the active semiconductor to avoid the need for further processing steps. Here, we report an appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-07, Vol.18 (7), p.725-731
Hauptverfasser: Bangsund, John S., Fielitz, Thomas R., Steiner, Trevor J., Shi, Kaicheng, Van Sambeek, Jack R., Clark, Catherine P., Holmes, Russell J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-organizing patterns with micrometre-scale features are promising for the large-area fabrication of photonic devices and scattering layers in optoelectronics. Pattern formation would ideally occur in the active semiconductor to avoid the need for further processing steps. Here, we report an approach to form periodic patterns in single layers of organic semiconductors by a simple annealing process. When heated, a crystallization front propagates across the film, producing a sinusoidal surface structure with wavelengths comparable to that of near-infrared light. These surface features initially form in the amorphous region within a micrometre of the crystal growth front, probably due to competition between crystal growth and surface mass transport. The pattern wavelength can be tuned from 800 nm to 2,400 nm by varying the film thickness and annealing temperature, and millimetre-scale domain sizes are obtained. This phenomenon could be exploited for the self-assembly of microstructured organic optoelectronic devices. Material depletion and accumulation at the crystallization front of organic semiconductors films induce the formation of large-area regular patterns, with a periodicity relevant to optoelectronic applications in the visible and near-infrared range.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-019-0379-3