Construction of Spatial Charge Separation Facets on BaTaO2N Crystals by Flux Growth Approach for Visible-Light-Driven H2 Production
Low charge separation efficiencies are regarded as obstacles that limit the improvement in the photocatalytic performance of BaTaO2N. In this study, we demonstrated that the anisotropic facets ({100} and {110} facets) of BaTaO2N for efficient spatial charge separation were successfully constructed u...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-06, Vol.11 (25), p.22264-22271 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low charge separation efficiencies are regarded as obstacles that limit the improvement in the photocatalytic performance of BaTaO2N. In this study, we demonstrated that the anisotropic facets ({100} and {110} facets) of BaTaO2N for efficient spatial charge separation were successfully constructed using the one-pot flux-assisted nitridation approach. As a result, the photocatalytic activity for H2 production on BaTaO2N with coexposed {100} and {110} facets was nearly 10-fold over that of BaTaO2N with only {100} facets and that of the conventional irregularly shaped sample. This finding provides an innovative approach to the development of efficient (oxy)nitride photocatalysts for solar energy conversion. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b03747 |