Quantum Dot Formation in Controllably Doped Graphene Nanoribbon
We introduce the controllable doping from hydrogen silsesquioxane (HSQ) to graphene by changing its electron-beam exposure dose. Using HSQ as the dopant, a fine-resolution electron-beam resist allows us to selectively dope graphene with an extremely high spatial resolution of a few nanometers. There...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-07, Vol.13 (7), p.7502-7507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the controllable doping from hydrogen silsesquioxane (HSQ) to graphene by changing its electron-beam exposure dose. Using HSQ as the dopant, a fine-resolution electron-beam resist allows us to selectively dope graphene with an extremely high spatial resolution of a few nanometers. Therefore, we can design and demonstrate the single quantum dot (QD)-like transport in the graphene nanoribbon (GNR) with the opening of the energy gap. Moreover, we suggest a rough geometric design rule in which a relatively short and wide GNR is required for observing the single QD-like transport. We envisage that this method can be utilized for other materials and for other applications, such as p–n junctions and tunnel field-effect transistors. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b02935 |