Dislocation processes during plastic deformation of Si and Ge in the range 0.50 to 0.95 of the melting temperature
Dislocation processes occurring during plastic deformation of Si and Ge for θ = 0.50 to 0.95 (θ = T/Tm is the relative temperature) have been studied both by etch pit method and TEM. A similarity of dislocation processes in Si and Ge when compared in terms of θ has been found. In low‐temperature def...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applied research Applied research, 1975-03, Vol.28 (1), p.355-364 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dislocation processes occurring during plastic deformation of Si and Ge for θ = 0.50 to 0.95 (θ = T/Tm is the relative temperature) have been studied both by etch pit method and TEM. A similarity of dislocation processes in Si and Ge when compared in terms of θ has been found. In low‐temperature deformation (θ = 0.5 to 0.8) dislocation glide is realized and cross slip is activated. The cross slip gives rise to a multiplication of dislocations. The interaction and multiplication of dislocations are accompanied by the formation of dipoles including faulted ones, multipoles, and bundles in slip bands. A system of Lomer dislocations is the main source of long‐range internal stresses in low‐temperature deformation. In high‐temperature deformation (θ > 0.8) gliding of dislocations combined with climb is realized. This results in decreasing the number of dipoles and Lomer dislocations. At θ > 0.8 a main mechanism of dislocation interaction is their intersection with the degeneration of a quadrupole node into two triple ones.
[Russian Text Ignored]. |
---|---|
ISSN: | 0031-8965 1521-396X |
DOI: | 10.1002/pssa.2210280141 |