Physical Fingerprints of the 2O-tαP Phase in Phosphorene Stacking

The 2O-tαP phase is a bilayer phosphorene stacking twisted by ∼70.5° standing out from all the potential candidates predicted by our previous work. Here, by linear response theory, we directly verified that the 2O-tαP phase preserves the intrinsic features of phonon spectrum of the existing AB phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-06, Vol.10 (11), p.3190-3196
Hauptverfasser: Pan, Douxing, Liu, Changsong, Liu, Gui-Bin, Feng, Song, Yao, Yugui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 2O-tαP phase is a bilayer phosphorene stacking twisted by ∼70.5° standing out from all the potential candidates predicted by our previous work. Here, by linear response theory, we directly verified that the 2O-tαP phase preserves the intrinsic features of phonon spectrum of the existing AB phase, reflecting a stable thermodynamic behavior. Then we provided three distinct fingerprints to help finding this new phase: upon comparison to the existing shifting bilayer phosphorene, the in-plane elastic constants showed a much weaker anisotropic response, providing a characteristic mechanical criterion; the calculated Raman spectrum revealed for the low frequency rang the layer-breathing mode and the out-of-plane twisted mode, L-A1 and L-A2, both of which together stabilize the twisted structure; in particular, the simulated scanning tunneling microscope image presented recognizable cross stripes, which should withstand an examination of exfoliated bilayer and few-layer black phosphorus.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.9b01323