Synthesis Process of CoSeO3 Microspheres for Unordinary Li‐ion Storage Performances and Mechanism of Their Conversion Reaction with Li ions

Multicomponent materials with various double cations have been studied as anode materials of lithium‐ion batteries (LIBs). Heterostructures formed by coupling different‐bandgap nanocrystals enhance the surface reaction kinetics and facilitate charge transport because of the internal electric field a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-06, Vol.15 (24), p.e1901320-e1901320
Hauptverfasser: Gi Dae Park, Jeong Hoo Hong, Choi, Jae Hun, Jong‐Heun Lee, Kim, Yang Soo, Yun Chan Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multicomponent materials with various double cations have been studied as anode materials of lithium‐ion batteries (LIBs). Heterostructures formed by coupling different‐bandgap nanocrystals enhance the surface reaction kinetics and facilitate charge transport because of the internal electric field at the heterointerface. Accordingly, metal selenites can be considered efficient anode materials of LIBs because they transform into metal selenide and oxide nanocrystals in the first cycle. However, few studies have reported synthesis of uniquely structured metal selenite microspheres. Herein, synthesis of high‐porosity CoSeO3 microspheres is reported. Through one‐pot oxidation at 400 °C, CoSex–C microspheres formed by spray pyrolysis transform into CoSeO3 microspheres showing unordinary cycling and rate performances. The conversion mechanism of CoSeO3 microspheres for lithium‐ion storage is systematically studied by cyclic voltammetry, in situ X‐ray diffraction and electrochemical impedance spectroscopy, and transmission electron microscopy. The reversible reaction mechanism of the CoSeO3 phase from the second cycle onward is evaluated as CoO + xSeO2 + (1 − x)Se + 4(x + 1)Li++ 4( x + 1)e− ↔ Co + (2x + 1)Li2O + Li2Se. The CoSeO3 microspheres show a high reversible capacity of 709 mA h g−1 for the 1400th cycle at a current density of 3 A g−1 and a high reversible capacity of 526 mA h g−1 even at an extremely high current density of 30 A g−1.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201901320