Faecal Proteases from Pouchitis Patients Activate Protease Activating Receptor-2 to Disrupt the Epithelial Barrier

Abstract Background and Aims The pathogenesis of pouch inflammation may involve epithelial barrier disruption. We investigated whether faecal proteolytic activity is increased during pouchitis and results in epithelial barrier dysfunction through protease activating receptor [PAR] activation, and as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Crohn's and colitis 2019-12, Vol.13 (12), p.1558-1568
Hauptverfasser: Hoffman, Sarit, Aviv Cohen, Nathaniel, Carroll, Ian M, Tulchinsky, Hagit, Borovok, Ilya, Dotan, Iris, Maharshak, Nitsan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background and Aims The pathogenesis of pouch inflammation may involve epithelial barrier disruption. We investigated whether faecal proteolytic activity is increased during pouchitis and results in epithelial barrier dysfunction through protease activating receptor [PAR] activation, and assessed whether the intestinal microbiome may be the source of the proteases. Methods Faecal samples were measured for protease activity using a fluorescein isothiocyanate [FITC]-casein florescence assay. Caco-2 cell monolayers were exposed to faecal supernatants to assess permeability to FITC-dextran. Tight junction protein integrity and PAR activation were assessed by immunoblot and immunofluorescence. A truncated PAR2 protein in Caco-2 cells was achieved by stable transfection using CRISPR/Cas9 plasmid. PAR2 activation in pouch biopsies was examined using antibodies directed to the N-terminus of the protein. Microbial composition was analysed based on 16S rRNA gene sequence analysis. Results Ten pouchitis patients, six normal pouch [NP] patients and nine healthy controls [HC] were recruited. The pouchitis patients exhibited a 5.19- and 5.35-fold higher faecal protease [FP] activity [p ≤ 0.05] compared to the NP and HC participants, respectively. The genus Haemophilus was positively associated with FP activity [R = 0.718, false discovery rate < 0.1]. Faecal supernatants from pouchitis patients activated PAR2 on Caco-2 monolayers, disrupted tight junction proteins and increased epithelial permeability. PAR2 truncation in Caco-2 abrogated faecal protease-mediated permeability. Pouch biopsies obtained from pouchitis patients, but not from NP patients, displayed PAR2 activation. Conclusions Protease-producing bacteria may increase faecal proteolytic activity that results in pouch inflammation through disruption of tight junction proteins and increased epithelial permeability in a PAR2-dependent manner. This mechanism may initiate or propagate pouch inflammation.
ISSN:1873-9946
1876-4479
DOI:10.1093/ecco-jcc/jjz086