Tunable Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbons by General One-Pot C–H Borylations
Boron-doping has long been recognized as a promising LUMO energy-lowering modification of graphene and related polycyclic aromatic hydrocarbons (PAHs). Unfortunately, synthetic difficulties have been a significant bottleneck for the understanding, optimization, and application of precisely boron-dop...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-06, Vol.141 (22), p.9096-9104 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boron-doping has long been recognized as a promising LUMO energy-lowering modification of graphene and related polycyclic aromatic hydrocarbons (PAHs). Unfortunately, synthetic difficulties have been a significant bottleneck for the understanding, optimization, and application of precisely boron-doped PAHs for optoelectronic purposes. Herein, a facile one-pot hydroboration electrophilic borylation cascade/dehydrogenation approach from simple alkene precursors is coupled with postsynthetic B-substitution to give access to ten ambient-stable core- and periphery-tuned boron-doped PAHs. These include large hitherto unknown doubly boron-doped analogues of anthanthrene and triangulene. Crystallographic, optical, electrochemical, and computational studies were performed to clarify the effect of boron-doped PAH shape, size, and structure on optoelectronic properties. Our molecular tuning allowed the synthesis of molecules exhibiting visible-range absorption, near-unity fluorescence quantum yields, and, to our knowledge, the most facile electrochemical reductions of any reported ambient-stable boron-doped PAHs (corresponding to LUMO energy levels as low as fullerenes). Finally, our study describes the first implementation of a precise three-coordinate boron-substituted PAH as an acceptor material in organic solar cells with power conversion efficiencies (PCEs) of up to 3%. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b04675 |