Dams have varying impacts on fish communities across latitudes: a quantitative synthesis

Dams are recognised to impact aquatic biodiversity, but the effects and conclusions diverge across studies and locations. By using a meta‐analytical approach, we quantified the effects of impoundment on fish communities distributed across three large biomes. The impacts of dams on richness and diver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2019-09, Vol.22 (9), p.1501-1516
Hauptverfasser: Turgeon, Katrine, Turpin, Christian, Gregory‐Eaves, Irene, Lawler, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dams are recognised to impact aquatic biodiversity, but the effects and conclusions diverge across studies and locations. By using a meta‐analytical approach, we quantified the effects of impoundment on fish communities distributed across three large biomes. The impacts of dams on richness and diversity differed across biomes, with significant declines in the tropics, lower amplitude but similar directional changes in temperate regions, and no changes in boreal regions. Our analyses showed that non‐native species increased significantly in tropical and temperate regulated rivers, but not in boreal rivers. In contrast, temporal trajectories in fish assemblage metrics were common across regions, with all biomes showing an increase in mean trophic level position and in the proportion of generalist species after impoundment. Such changes in fish assemblages may affect food web stability and merit closer study. Across the literature examined, predominant mechanisms that render fish assemblages susceptible to impacts from dams were: (1) the transformation of the lotic environment into a lentic environment; (2) habitat fragmentation and (3) the introduction of non‐native species. Collectively, our results highlight that an understanding of the regional context and a suite of community metrics are needed to make robust predictions about how fish will respond to river impoundments.
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.13283