Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules

Spatio-temporally controlled drug release based on conducting polymer films offers a powerful technology to improve the tissue integration for implantable neuroprobes. We here explore the release efficiency of such systems in order to improve the understanding of the release mechanism and allow for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2019-06, Vol.304, p.173-180
Hauptverfasser: Boehler, Christian, Oberueber, Felix, Asplund, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatio-temporally controlled drug release based on conducting polymer films offers a powerful technology to improve the tissue integration for implantable neuroprobes. We here explore the release efficiency of such systems in order to improve the understanding of the release mechanism and allow for optimized implementation of this technology into future drug release applications. By exposing drug loaded PEDOT coatings of different thicknesses to a multitude of release signals, along with optimizing the steps during the polymer synthesis, we could identify a highly reproducible electrostatically controlled drug release next to a slow diffusion driven release component. The release efficiency was moreover observed to be higher for a cyclic voltammetry signal in comparison to release driven by a constant potential. Biphasic current pulses, as used during neural stimulation, did not allow for long enough diffusion times to yield efficient active drug expulsion from the polymer films. A quantitative analysis could confirm an overall linear dependency between drug release and film thickness. The amount of drug released in response to the trigger signals was however not linearly correlated with the amount of charge applied. By combining these findings we could develop a model which accurately describes the drug release mechanism from a PEDOT film. The proposed model thereby points the way for how actively controlled, and diffusion related, release can be tuned for obtaining delivery dynamics tailored to specific applications. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2019.05.017