Effects of hydroxyethyl starch (HES 130/0.42) on endothelial and epithelial permeability in vitro
Hydroxyethyl starch (HES) is employed to sustain normovolemia in patients. Using a perfused organ model, we recently showed that HES impairs the intestinal barrier which is constituted of endothelial and epithelial cell layers. However, the target cells and molecular actions of HES in the intestine...
Gespeichert in:
Veröffentlicht in: | Toxicology in vitro 2019-10, Vol.60, p.36-43 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydroxyethyl starch (HES) is employed to sustain normovolemia in patients. Using a perfused organ model, we recently showed that HES impairs the intestinal barrier which is constituted of endothelial and epithelial cell layers. However, the target cells and molecular actions of HES in the intestine are mainly unknown.
Employing a model of human endothelial (HUVEC) and intestinal epithelial cells (Caco-2), we investigated the impact of HES, albumin and HES/albumin on cellular integrity/permeability and evaluated underlying molecular mechanisms.
Monolayers of HUVEC and Caco-2 were cultured with HES (3%), albumin (3%) or HES/albumin (1.5%/1.5%). Integrity and permeability of the cell layers were evaluated by FITC-dextran transfer, measurements of cell detachment, vitality, cell volume, LDH release and caspase-3/7 activity. Cellular mechanisms were analyzed by Westernblotting for P-akt, P-erk, claudin-3 and I-FABP.
HES application resulted in higher numbers of non-adherent/floating HUVEC cells (P |
---|---|
ISSN: | 0887-2333 1879-3177 |
DOI: | 10.1016/j.tiv.2019.05.001 |