The extracellular role of Ref-1 as anti-inflammatory function in lipopolysaccharide-induced septic mice
Apurinic/apyrimidinic endonuclease/redox factor-1 (Ref-1), a multifunctional protein secreted from stimulated cells, has been identified as a new serological biomarker. Despite recent reports on the role of Ref-1 in inflammation, the biological function of secreted Ref-1 remains unknown, especially...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2019-08, Vol.139, p.16-23 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Apurinic/apyrimidinic endonuclease/redox factor-1 (Ref-1), a multifunctional protein secreted from stimulated cells, has been identified as a new serological biomarker. Despite recent reports on the role of Ref-1 in inflammation, the biological function of secreted Ref-1 remains unknown, especially in vivo. This study aimed to evaluate the possible roles of secreted Ref-1 in lipopolysaccharide-induced systemic inflammation in vivo. We generated a secretory Ref-1 adenoviral vector system, AdPPT-LS-Ref-1, by conjugation of preprotrypsin leading sequence (PPT-LS) with full-length Ref-1 sequences. Expression of tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells and lipopolysaccharide (LPS)-induced cyclooxygenase-2 in Raw264.7 cells was inhibited by secretory Ref-1, and this inhibitory effect was abrogated following neutralization of Ref-1 with anti-Ref-1 antibody. Plasma Ref-1 levels following administration of AdPPT-LS-Ref-1 (2 × 109 ifu, i.p.) for 24 h were substantially higher than those recorded following administration of Adβgal (84.6 ± 7.2 ng/ml vs. 4.4 ± 1.5 ng/ml). Treatment with LPS (10 mg/kg, i.v. for 6 h) markedly increased VCAM-1 expression, cathepsin or myeloperoxidase activity, which were significantly suppressed by treatment with AdPPT-LS-Ref-1. Furthermore, LPS-induced cytokines, such as TNF-α, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein 1, were significantly inhibited in AdPPT-LS-Ref-1-treated mice. However, LPS-induced myeloperoxidase activities were not suppressed by treatment with the redox mutant of secretory Ref-1, AdPPT-LS-Ref-1(C65A/C93A), or wild-type AdRef-1. Collectively, these results suggest that secreted Ref-1 has anti-inflammatory properties and that its redox cysteine residue is associated with the anti-inflammatory activity in vivo. Furthermore, our findings indicate that secretory Ref-1 may be useful as a therapeutic biomolecule against systemic inflammation.
[Display omitted]
•Secretory Ref-1 inhibits LPS-induced inflammation in vivo.•In vivo LPS-induced myeloperoxidase activity is inhibited by secretory Ref-1.•Secretory Ref-1 inhibits LPS-induced cytokine production.•Secretory Ref-1 has potential in prevention and treatment of LPS-induced sepsis. |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2019.05.013 |