Self-verifying variational quantum simulation of lattice models

Hybrid classical–quantum algorithms aim to variationally solve optimization problems using a feedback loop between a classical computer and a quantum co-processor, while benefiting from quantum resources. Here we present experiments that demonstrate self-verifying, hybrid, variational quantum simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-05, Vol.569 (7756), p.355-360
Hauptverfasser: Kokail, C., Maier, C., van Bijnen, R., Brydges, T., Joshi, M. K., Jurcevic, P., Muschik, C. A., Silvi, P., Blatt, R., Roos, C. F., Zoller, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid classical–quantum algorithms aim to variationally solve optimization problems using a feedback loop between a classical computer and a quantum co-processor, while benefiting from quantum resources. Here we present experiments that demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics. In contrast to analogue quantum simulation, this approach forgoes the requirement of realizing the targeted Hamiltonian directly in the laboratory, thus enabling the study of a wide variety of previously intractable target models. We focus on the lattice Schwinger model, a gauge theory of one-dimensional quantum electrodynamics. Our quantum co-processor is a programmable, trapped-ion analogue quantum simulator with up to 20 qubits, capable of generating families of entangled trial states respecting the symmetries of the target Hamiltonian. We determine ground states, energy gaps and additionally, by measuring variances of the Schwinger Hamiltonian, we provide algorithmic errors for the energies, thus taking a step towards verifying quantum simulation. Quantum-classical variational techniques are combined with a programmable analogue quantum simulator based on a one-dimensional array of up to 20 trapped calcium ions to simulate the ground state of the lattice Schwinger model.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-019-1177-4