Enhanced autophagic flux contributes to cardioprotection of remifentanil postconditioning after hypoxia/reoxygenation injury in H9c2 cardiomyocytes

Remifentanil postconditioning (RPC) has been shown to provide potent cardioprotection against ischemia/reperfusion (I/R) injury, but the underlying mechanism has not been fully elucidated. The current study was designed to investigate whether RPC protects cardiomyocytes against I/R injury through en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2019-06, Vol.514 (3), p.953-959
Hauptverfasser: Zuo, Youmei, Zhang, Jiqian, Cheng, Xinqi, Li, Jun, Yang, Zhilai, Liu, Xuesheng, Gu, Erwei, Zhang, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remifentanil postconditioning (RPC) has been shown to provide potent cardioprotection against ischemia/reperfusion (I/R) injury, but the underlying mechanism has not been fully elucidated. The current study was designed to investigate whether RPC protects cardiomyocytes against I/R injury through enhancement of autophagic flux. H9c2 cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to mimic myocardial I/R injury in vitro. Autophagosome formation was evaluated by detecting of light chain 3 (LC3) puncta number and LC3Ⅱ levels using immunofluorescence and western blotting, respectively. Additionally, dual fluorescent staining of LC3 and lysosomal-associated membrane protein 2, a lysosomal marker protein, were used to detect autolysosome formation. Moreover, autophagic flux integrity was tracked using changes in LC3Ⅱ and p62 levels. Lastly, myocardial injury was detected by Hoechst 33342 and propidium iodide staining and MTT assay. The results showed that RPC increased autophagosome formation and promoted autophagosome-lysosome fusion, thereby improving autophagic flux in H9c2 cells. Reversal of these effect by bafilomycin A1 or chloroquine co-administration at reoxygenation onset indicated that RPC improved the impaired autophagic flux following H/R injury. Induction of autophagy was associated with increased cell viability and decreased apoptosis. Autophagy inhibition with bafilomycin A1 or chloroquine and ATG7shRNA significantly abolished RPC-induced cardioprotection. In conclusion, our finding that RPC can protect cardiomyocytes against H/R injury through enhancement of autophagic flux suggests a new mechanism for myocardial protection of opioid postconditioning. •Autophagosome formation increased but its clearance impaired following H/R insult.•RPC increased autophagosome generation and promoted autophagosome-lysosome fusion.•RPC restored autophagic flux and ameliorated myocardial injury after H/R injury.•Protective autophagy of RPC provides a new therapeutic strategy for heart disease.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2019.05.068