Cas3-stimulated runaway replication of modified ColE1 plasmids in Escherichia coli is temperature dependent

ABSTRACT The clustered regularly interspersed short palindromic repeats (CRISPR)-Cas system constitutes an adaptive immunity system of prokaryotes against mobile genetic elements using a CRISPR RNA (crRNA)-mediated interference mechanism. In Type I CRISPR-Cas systems, crRNA guided by a Cascade compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology letters 2019-05, Vol.366 (9), p.1
Hauptverfasser: Radovcic, Marin, Culo, Anja, Ivancic-Bace, Ivana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The clustered regularly interspersed short palindromic repeats (CRISPR)-Cas system constitutes an adaptive immunity system of prokaryotes against mobile genetic elements using a CRISPR RNA (crRNA)-mediated interference mechanism. In Type I CRISPR-Cas systems, crRNA guided by a Cascade complex recognises the matching target DNA and promotes an R-loop formation, RNA-DNA hybrid. The helicase-nuclease Cas3 protein is then recruited to the Cascade/R-loop complex where it nicks and degrades DNA. The Cas3 activity in CRISPR-Cas immunity is reduced in Δhns cells at 37°C for unknown reasons. Cas3 can also influence regulation of plasmid replication and promote uncontrolled (‘runaway’) replication of ColE1 plasmids independently of other CRISPR-Cas components, requiring only its helicase activity. In this work we wanted to test whether Cas3-stimulated uncontrolled plasmid replication is affected by the temperature in Δhns and/or ΔhtpG mutants. We found that Cas3-stimulated uncontrolled plasmid replication occurs only at 37°C, irrespective of the genotype of the analysed mutants, and dependent on Cas3 helicase function. We also found that plasmid replication was strongly reduced by the hns mutation at 30°C and that Cas3 could interfere with T4 phage replication at both incubation temperatures. Increased plasmid replication depends on change in ATPase/helicase activity of Cas3 protein which depends on the temperature of incubation.
ISSN:1574-6968
0378-1097
1574-6968
DOI:10.1093/femsle/fnz106