Copper-Containing Carbon Feedstock for Growing Superclean Graphene

Chemical vapor deposition (CVD) enables the large-scale growth of high-quality graphene film and exhibits considerable potential for the industrial production of graphene. However, CVD-grown graphene film contains surface contamination, which in turn hinders its potential applications, for example,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-05, Vol.141 (19), p.7670-7674
Hauptverfasser: Jia, Kaicheng, Zhang, Jincan, Lin, Li, Li, Zhenzhu, Gao, Jing, Sun, Luzhao, Xue, Ruiwen, Li, Jiayu, Kang, Ning, Luo, Zhengtang, Rummeli, Mark H, Peng, Hailin, Liu, Zhongfan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical vapor deposition (CVD) enables the large-scale growth of high-quality graphene film and exhibits considerable potential for the industrial production of graphene. However, CVD-grown graphene film contains surface contamination, which in turn hinders its potential applications, for example, in electrical and optoelectronic devices and in graphene-membrane-based applications. To solve this issue, we demonstrated a modified gas-phase reaction to achieve the large-scale growth of contamination-free graphene film, i.e., superclean graphene, using a metal-containing molecule, copper­(II) acetate, Cu­(OAc)2, as the carbon source. During high-temperature CVD, the Cu-containing carbon source significantly increased the Cu content in the gas phase, which in turn suppressed the formation of contamination on the graphene surface by ensuring sufficient decomposition of the carbon feedstock. The as-received graphene with a surface cleanness of about 99% showed enhanced optical and electrical properties. This study opens a new avenue for improving graphene quality with respect to surface cleanness and provides new insight into the mechanism of graphene growth through the gas-phase reaction pathway.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b02068