MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma

MicroRNA miR-31 is implicated in the neoplastic process of various malignancies including oral squamous cell carcinoma (OSCC). Silent information regulator 3 (Sirtuin3 or SIRT3) is a NAD-dependent deacetylase that regulates metabolic process. Suppressor role of SIRT3 has been found in neoplasms. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2019-08, Vol.456, p.40-48
Hauptverfasser: Kao, Yu-Yu, Chou, Chung-Hsien, Yeh, Li-Yin, Chen, Yi-Fen, Chang, Kuo-Wei, Liu, Chung-Ji, Fan Chiang, Chun-Yu, Lin, Shu-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 40
container_title Cancer letters
container_volume 456
creator Kao, Yu-Yu
Chou, Chung-Hsien
Yeh, Li-Yin
Chen, Yi-Fen
Chang, Kuo-Wei
Liu, Chung-Ji
Fan Chiang, Chun-Yu
Lin, Shu-Chun
description MicroRNA miR-31 is implicated in the neoplastic process of various malignancies including oral squamous cell carcinoma (OSCC). Silent information regulator 3 (Sirtuin3 or SIRT3) is a NAD-dependent deacetylase that regulates metabolic process. Suppressor role of SIRT3 has been found in neoplasms. This study investigates the disruptions of miR-31-SIRT3 cascade to explore their potential association with metabolic change in OSCC. We identified that miR-31 directly targeted SIRT3 in OSCC cells, and a reverse correlation between miR-31 expression and SIRT3 expression was noted in OSCC tumors. SIRT3 expression attenuated the miR-31 enhanced tumor cell migration and invasion. It also reduced the tumorigenic potential of FaDu cell line. miR-31-SIRT3 impaired the mitochondrial membrane potential and structural integrity. The dis-regulation of this axis also contributed to the genesis of oxidative stress. In addition, miR-31 switched tumor cells from aerobic metabolism to glycolytic metabolism. This study provides novel evidences demonstrating the presence of miR-31-mediated post-transcriptional regulation of SIRT3 in OSCC. The disruption of miR-31-SIRT3 cascade and the consequential metabolic aberrances are involved in OSCC progression. •miR-31 targets SIRT3 to drive OSCC invasion.•OSCC tumors exhibit miR-31 upregulation and SIRT3 downregulation.•miR-31-SIRT3 disruption underlies the mitochondrial disturbance.•miR-31-SIRT3 cascade induces ROS, glycolytic metabolism and lactate production.
doi_str_mv 10.1016/j.canlet.2019.04.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231952069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383519302654</els_id><sourcerecordid>2226706730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2c66f00f1ceac428a1ec0784e520df8af87c955b143c46a46049a5041b2354b83</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCP0DIEhcuCePPOBekqiq0UgFpKWfL60zAqyRebKei_x5XWzhw4OTD-8w71jyEvGLQMmD63b71bpmwtBxY34JsgZsnZMNMx5uuN_CUbECAbIQR6oSc5rwHACU79ZycCAZKMcY2JH4KPsXt53M6h20jGC0ufceS6dfr7a2gJdIh5LQeSs1L9D_iMqTgJup8CXeh3FO3DDQsPqHLSOOvMLgaIM0lYc41oTFV3LvkwxJn94I8G92U8eXje0a-fbi8vbhqbr58vL44v2m8VLo03Gs9AozMo_OSG8fQQ2ckKg7DaNxoOt8rtWNSeKmd1CB7p0CyHRdK7ow4I2-PvYcUf66Yi51D9jhNbsG4Zsu5YH0t031F3_yD7uOalvq7SnHdge4EVEoeqXqunBOO9pDC7NK9ZWAfhNi9PQqxD0IsSFuF1LHXj-Xrbsbh79AfAxV4fwSwXuMuYLLZB1w8DiGhL3aI4f8bfgOf-50b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226706730</pqid></control><display><type>article</type><title>MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kao, Yu-Yu ; Chou, Chung-Hsien ; Yeh, Li-Yin ; Chen, Yi-Fen ; Chang, Kuo-Wei ; Liu, Chung-Ji ; Fan Chiang, Chun-Yu ; Lin, Shu-Chun</creator><creatorcontrib>Kao, Yu-Yu ; Chou, Chung-Hsien ; Yeh, Li-Yin ; Chen, Yi-Fen ; Chang, Kuo-Wei ; Liu, Chung-Ji ; Fan Chiang, Chun-Yu ; Lin, Shu-Chun</creatorcontrib><description>MicroRNA miR-31 is implicated in the neoplastic process of various malignancies including oral squamous cell carcinoma (OSCC). Silent information regulator 3 (Sirtuin3 or SIRT3) is a NAD-dependent deacetylase that regulates metabolic process. Suppressor role of SIRT3 has been found in neoplasms. This study investigates the disruptions of miR-31-SIRT3 cascade to explore their potential association with metabolic change in OSCC. We identified that miR-31 directly targeted SIRT3 in OSCC cells, and a reverse correlation between miR-31 expression and SIRT3 expression was noted in OSCC tumors. SIRT3 expression attenuated the miR-31 enhanced tumor cell migration and invasion. It also reduced the tumorigenic potential of FaDu cell line. miR-31-SIRT3 impaired the mitochondrial membrane potential and structural integrity. The dis-regulation of this axis also contributed to the genesis of oxidative stress. In addition, miR-31 switched tumor cells from aerobic metabolism to glycolytic metabolism. This study provides novel evidences demonstrating the presence of miR-31-mediated post-transcriptional regulation of SIRT3 in OSCC. The disruption of miR-31-SIRT3 cascade and the consequential metabolic aberrances are involved in OSCC progression. •miR-31 targets SIRT3 to drive OSCC invasion.•OSCC tumors exhibit miR-31 upregulation and SIRT3 downregulation.•miR-31-SIRT3 disruption underlies the mitochondrial disturbance.•miR-31-SIRT3 cascade induces ROS, glycolytic metabolism and lactate production.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2019.04.028</identifier><identifier>PMID: 31055111</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Animals ; Apoptosis ; Carcinoma ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Dehydrogenases ; Disruption ; Energy Metabolism ; Epidermal growth factor ; Female ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Glycolysis ; Homeostasis ; Humans ; Male ; Medical prognosis ; Membrane potential ; Metabolism ; Mice, Nude ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Middle Aged ; miR-31 ; miRNA ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - pathology ; Mouth Neoplasms - enzymology ; Mouth Neoplasms - genetics ; Mouth Neoplasms - pathology ; NAD ; Neoplasia ; Neoplasm Invasiveness ; Oral ; Oral cancer ; Oral carcinoma ; Oral squamous cell carcinoma ; Oxidative Stress ; Pathogenesis ; Phosphorylation ; Polymerase chain reaction ; Post-transcription ; Proteins ; Signal Transduction ; SIRT3 ; Sirtuin 3 - genetics ; Sirtuin 3 - metabolism ; Smoking ; Squamous cell carcinoma ; Squamous Cell Carcinoma of Head and Neck - enzymology ; Squamous Cell Carcinoma of Head and Neck - genetics ; Squamous Cell Carcinoma of Head and Neck - pathology ; Tumor cells ; Tumors</subject><ispartof>Cancer letters, 2019-08, Vol.456, p.40-48</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>2019. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2c66f00f1ceac428a1ec0784e520df8af87c955b143c46a46049a5041b2354b83</citedby><cites>FETCH-LOGICAL-c456t-2c66f00f1ceac428a1ec0784e520df8af87c955b143c46a46049a5041b2354b83</cites><orcidid>0000-0001-9177-3647 ; 0000-0002-0385-869X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304383519302654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31055111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kao, Yu-Yu</creatorcontrib><creatorcontrib>Chou, Chung-Hsien</creatorcontrib><creatorcontrib>Yeh, Li-Yin</creatorcontrib><creatorcontrib>Chen, Yi-Fen</creatorcontrib><creatorcontrib>Chang, Kuo-Wei</creatorcontrib><creatorcontrib>Liu, Chung-Ji</creatorcontrib><creatorcontrib>Fan Chiang, Chun-Yu</creatorcontrib><creatorcontrib>Lin, Shu-Chun</creatorcontrib><title>MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>MicroRNA miR-31 is implicated in the neoplastic process of various malignancies including oral squamous cell carcinoma (OSCC). Silent information regulator 3 (Sirtuin3 or SIRT3) is a NAD-dependent deacetylase that regulates metabolic process. Suppressor role of SIRT3 has been found in neoplasms. This study investigates the disruptions of miR-31-SIRT3 cascade to explore their potential association with metabolic change in OSCC. We identified that miR-31 directly targeted SIRT3 in OSCC cells, and a reverse correlation between miR-31 expression and SIRT3 expression was noted in OSCC tumors. SIRT3 expression attenuated the miR-31 enhanced tumor cell migration and invasion. It also reduced the tumorigenic potential of FaDu cell line. miR-31-SIRT3 impaired the mitochondrial membrane potential and structural integrity. The dis-regulation of this axis also contributed to the genesis of oxidative stress. In addition, miR-31 switched tumor cells from aerobic metabolism to glycolytic metabolism. This study provides novel evidences demonstrating the presence of miR-31-mediated post-transcriptional regulation of SIRT3 in OSCC. The disruption of miR-31-SIRT3 cascade and the consequential metabolic aberrances are involved in OSCC progression. •miR-31 targets SIRT3 to drive OSCC invasion.•OSCC tumors exhibit miR-31 upregulation and SIRT3 downregulation.•miR-31-SIRT3 disruption underlies the mitochondrial disturbance.•miR-31-SIRT3 cascade induces ROS, glycolytic metabolism and lactate production.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Carcinoma</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Dehydrogenases</subject><subject>Disruption</subject><subject>Energy Metabolism</subject><subject>Epidermal growth factor</subject><subject>Female</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Membrane potential</subject><subject>Metabolism</subject><subject>Mice, Nude</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Middle Aged</subject><subject>miR-31</subject><subject>miRNA</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - pathology</subject><subject>Mouth Neoplasms - enzymology</subject><subject>Mouth Neoplasms - genetics</subject><subject>Mouth Neoplasms - pathology</subject><subject>NAD</subject><subject>Neoplasia</subject><subject>Neoplasm Invasiveness</subject><subject>Oral</subject><subject>Oral cancer</subject><subject>Oral carcinoma</subject><subject>Oral squamous cell carcinoma</subject><subject>Oxidative Stress</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Polymerase chain reaction</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>SIRT3</subject><subject>Sirtuin 3 - genetics</subject><subject>Sirtuin 3 - metabolism</subject><subject>Smoking</subject><subject>Squamous cell carcinoma</subject><subject>Squamous Cell Carcinoma of Head and Neck - enzymology</subject><subject>Squamous Cell Carcinoma of Head and Neck - genetics</subject><subject>Squamous Cell Carcinoma of Head and Neck - pathology</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EotvCP0DIEhcuCePPOBekqiq0UgFpKWfL60zAqyRebKei_x5XWzhw4OTD-8w71jyEvGLQMmD63b71bpmwtBxY34JsgZsnZMNMx5uuN_CUbECAbIQR6oSc5rwHACU79ZycCAZKMcY2JH4KPsXt53M6h20jGC0ufceS6dfr7a2gJdIh5LQeSs1L9D_iMqTgJup8CXeh3FO3DDQsPqHLSOOvMLgaIM0lYc41oTFV3LvkwxJn94I8G92U8eXje0a-fbi8vbhqbr58vL44v2m8VLo03Gs9AozMo_OSG8fQQ2ckKg7DaNxoOt8rtWNSeKmd1CB7p0CyHRdK7ow4I2-PvYcUf66Yi51D9jhNbsG4Zsu5YH0t031F3_yD7uOalvq7SnHdge4EVEoeqXqunBOO9pDC7NK9ZWAfhNi9PQqxD0IsSFuF1LHXj-Xrbsbh79AfAxV4fwSwXuMuYLLZB1w8DiGhL3aI4f8bfgOf-50b</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kao, Yu-Yu</creator><creator>Chou, Chung-Hsien</creator><creator>Yeh, Li-Yin</creator><creator>Chen, Yi-Fen</creator><creator>Chang, Kuo-Wei</creator><creator>Liu, Chung-Ji</creator><creator>Fan Chiang, Chun-Yu</creator><creator>Lin, Shu-Chun</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9177-3647</orcidid><orcidid>https://orcid.org/0000-0002-0385-869X</orcidid></search><sort><creationdate>20190801</creationdate><title>MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma</title><author>Kao, Yu-Yu ; Chou, Chung-Hsien ; Yeh, Li-Yin ; Chen, Yi-Fen ; Chang, Kuo-Wei ; Liu, Chung-Ji ; Fan Chiang, Chun-Yu ; Lin, Shu-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2c66f00f1ceac428a1ec0784e520df8af87c955b143c46a46049a5041b2354b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Carcinoma</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Dehydrogenases</topic><topic>Disruption</topic><topic>Energy Metabolism</topic><topic>Epidermal growth factor</topic><topic>Female</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Membrane potential</topic><topic>Metabolism</topic><topic>Mice, Nude</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Middle Aged</topic><topic>miR-31</topic><topic>miRNA</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - pathology</topic><topic>Mouth Neoplasms - enzymology</topic><topic>Mouth Neoplasms - genetics</topic><topic>Mouth Neoplasms - pathology</topic><topic>NAD</topic><topic>Neoplasia</topic><topic>Neoplasm Invasiveness</topic><topic>Oral</topic><topic>Oral cancer</topic><topic>Oral carcinoma</topic><topic>Oral squamous cell carcinoma</topic><topic>Oxidative Stress</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Polymerase chain reaction</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>SIRT3</topic><topic>Sirtuin 3 - genetics</topic><topic>Sirtuin 3 - metabolism</topic><topic>Smoking</topic><topic>Squamous cell carcinoma</topic><topic>Squamous Cell Carcinoma of Head and Neck - enzymology</topic><topic>Squamous Cell Carcinoma of Head and Neck - genetics</topic><topic>Squamous Cell Carcinoma of Head and Neck - pathology</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Yu-Yu</creatorcontrib><creatorcontrib>Chou, Chung-Hsien</creatorcontrib><creatorcontrib>Yeh, Li-Yin</creatorcontrib><creatorcontrib>Chen, Yi-Fen</creatorcontrib><creatorcontrib>Chang, Kuo-Wei</creatorcontrib><creatorcontrib>Liu, Chung-Ji</creatorcontrib><creatorcontrib>Fan Chiang, Chun-Yu</creatorcontrib><creatorcontrib>Lin, Shu-Chun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, Yu-Yu</au><au>Chou, Chung-Hsien</au><au>Yeh, Li-Yin</au><au>Chen, Yi-Fen</au><au>Chang, Kuo-Wei</au><au>Liu, Chung-Ji</au><au>Fan Chiang, Chun-Yu</au><au>Lin, Shu-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>456</volume><spage>40</spage><epage>48</epage><pages>40-48</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>MicroRNA miR-31 is implicated in the neoplastic process of various malignancies including oral squamous cell carcinoma (OSCC). Silent information regulator 3 (Sirtuin3 or SIRT3) is a NAD-dependent deacetylase that regulates metabolic process. Suppressor role of SIRT3 has been found in neoplasms. This study investigates the disruptions of miR-31-SIRT3 cascade to explore their potential association with metabolic change in OSCC. We identified that miR-31 directly targeted SIRT3 in OSCC cells, and a reverse correlation between miR-31 expression and SIRT3 expression was noted in OSCC tumors. SIRT3 expression attenuated the miR-31 enhanced tumor cell migration and invasion. It also reduced the tumorigenic potential of FaDu cell line. miR-31-SIRT3 impaired the mitochondrial membrane potential and structural integrity. The dis-regulation of this axis also contributed to the genesis of oxidative stress. In addition, miR-31 switched tumor cells from aerobic metabolism to glycolytic metabolism. This study provides novel evidences demonstrating the presence of miR-31-mediated post-transcriptional regulation of SIRT3 in OSCC. The disruption of miR-31-SIRT3 cascade and the consequential metabolic aberrances are involved in OSCC progression. •miR-31 targets SIRT3 to drive OSCC invasion.•OSCC tumors exhibit miR-31 upregulation and SIRT3 downregulation.•miR-31-SIRT3 disruption underlies the mitochondrial disturbance.•miR-31-SIRT3 cascade induces ROS, glycolytic metabolism and lactate production.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31055111</pmid><doi>10.1016/j.canlet.2019.04.028</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9177-3647</orcidid><orcidid>https://orcid.org/0000-0002-0385-869X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2019-08, Vol.456, p.40-48
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_miscellaneous_2231952069
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Apoptosis
Carcinoma
Cell adhesion & migration
Cell Line, Tumor
Cell migration
Cell Movement
Dehydrogenases
Disruption
Energy Metabolism
Epidermal growth factor
Female
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Neoplastic
Gene regulation
Glycolysis
Homeostasis
Humans
Male
Medical prognosis
Membrane potential
Metabolism
Mice, Nude
MicroRNAs - genetics
MicroRNAs - metabolism
Middle Aged
miR-31
miRNA
Mitochondria
Mitochondria - enzymology
Mitochondria - pathology
Mouth Neoplasms - enzymology
Mouth Neoplasms - genetics
Mouth Neoplasms - pathology
NAD
Neoplasia
Neoplasm Invasiveness
Oral
Oral cancer
Oral carcinoma
Oral squamous cell carcinoma
Oxidative Stress
Pathogenesis
Phosphorylation
Polymerase chain reaction
Post-transcription
Proteins
Signal Transduction
SIRT3
Sirtuin 3 - genetics
Sirtuin 3 - metabolism
Smoking
Squamous cell carcinoma
Squamous Cell Carcinoma of Head and Neck - enzymology
Squamous Cell Carcinoma of Head and Neck - genetics
Squamous Cell Carcinoma of Head and Neck - pathology
Tumor cells
Tumors
title MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20miR-31%20targets%20SIRT3%20to%20disrupt%20mitochondrial%20activity%20and%20increase%20oxidative%20stress%20in%20oral%20carcinoma&rft.jtitle=Cancer%20letters&rft.au=Kao,%20Yu-Yu&rft.date=2019-08-01&rft.volume=456&rft.spage=40&rft.epage=48&rft.pages=40-48&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2019.04.028&rft_dat=%3Cproquest_cross%3E2226706730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226706730&rft_id=info:pmid/31055111&rft_els_id=S0304383519302654&rfr_iscdi=true