Detecting Fractional Chern Insulators through Circular Dichroism

Great efforts are currently devoted to the engineering of topological Bloch bands in ultracold atomic gases. Recent achievements in this direction, together with the possibility of tuning interparticle interactions, suggest that strongly correlated states reminiscent of fractional quantum Hall (FQH)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-04, Vol.122 (16), p.166801-166801, Article 166801
Hauptverfasser: Repellin, C, Goldman, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Great efforts are currently devoted to the engineering of topological Bloch bands in ultracold atomic gases. Recent achievements in this direction, together with the possibility of tuning interparticle interactions, suggest that strongly correlated states reminiscent of fractional quantum Hall (FQH) liquids could soon be generated in these systems. In this experimental framework, where transport measurements are limited, identifying unambiguous signatures of FQH-type states constitutes a challenge on its own. Here, we demonstrate that the fractional nature of the quantized Hall conductance, a fundamental characteristic of FQH states, could be detected in ultracold gases through a circular-dichroic measurement, namely, by monitoring the energy absorbed by the atomic cloud upon a circular drive. We validate this approach by comparing the circular-dichroic signal to the many-body Chern number and discuss how such measurements could be performed to distinguish FQH-type states from competing states. Our scheme offers a practical tool for the detection of topologically ordered states in quantum-engineered systems, with potential applications in solid state.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.122.166801