Integrated proteomics and metabolomics analysis reveals differential lipid metabolism in human umbilical vein endothelial cells under high and low shear stress

Atherosclerotic plaque development is closely associated with the hemodynamic forces applied to endothelial cells (ECs). Among these, shear stress (SS) plays a key role in disease development since changes in flow intensity and direction could stimulate an atheroprone or atheroprotective phenotype....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2019-08, Vol.317 (2), p.C326-C338
Hauptverfasser: Venturini, Gabriela, Malagrino, Pamella Araujo, Padilha, Kallyandra, Tanaka, Leonardo Yuji, Laurindo, Francisco Rafael, Dariolli, Rafael, Carvalho, Valdemir Melechco, Cardozo, Karina Helena Morais, Krieger, Jose Eduardo, Pereira, Alexandre da Costa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atherosclerotic plaque development is closely associated with the hemodynamic forces applied to endothelial cells (ECs). Among these, shear stress (SS) plays a key role in disease development since changes in flow intensity and direction could stimulate an atheroprone or atheroprotective phenotype. ECs under low or oscillatory SS (LSS) show upregulation of inflammatory, adhesion, and cellular permeability molecules. On the contrary, cells under high or laminar SS (HSS) increase their expression of protective and anti-inflammatory factors. The mechanism behind SS regulation of an atheroprotective phenotype is not completely elucidated. Here we used proteomics and metabolomics to better understand the changes in endothelial cells (human umbilical vein endothelial cells) under in vitro LSS and HSS that promote an atheroprone or atheroprotective profile and how these modifications can be connected to atherosclerosis development. Our data showed that lipid metabolism, in special cholesterol metabolism, was downregulated in cells under LSS. The low-density lipoprotein receptor (LDLR) showed significant alterations both at the quantitative expression level as well as regarding posttranslational modifications. Under LSS, LDLR was seen at lower concentrations and with a different glycosylation profile. Finally, modulating LDLR with atorvastatin led to the recapitulation of a HSS metabolic phenotype in EC under LSS. Altogether, our data suggest that there is significant modulation of lipid metabolism in endothelial cells under different SS intensities and that this could contribute to the atheroprone phenotype of LSS. Statin treatment was able to partially recover the protective profile of these cells.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00128.2018