Unexpected chalcogen bonds in tetravalent sulfur compounds
In this manuscript we have combined a CSD (Cambridge Structural Database) analysis with theoretical calculations (RI-MP2/def2-TZVP level of theory) to study the importance of polarizability in chalcogen bonding interactions. It is well known that chalcogen bonds are stronger for less electronegative...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019-06, Vol.21 (21), p.11313-11319 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this manuscript we have combined a CSD (Cambridge Structural Database) analysis with theoretical calculations (RI-MP2/def2-TZVP level of theory) to study the importance of polarizability in chalcogen bonding interactions. It is well known that chalcogen bonds are stronger for less electronegative chalcogen atoms,
i.e.
, S < Se < Te, and in the presence of electron-withdrawing substituents at the chalcogen. Herein, we report experimental and theoretical evidence (RI-MP2/def2-TZVP) that the chalcogen bond acceptor (Lewis base) has a preference in some cases for the σ-hole that is opposite to the more polarizable group instead of the more electron withdrawing one, as confirmed by Natural Bond Orbital (NBO) and Bader's theory of "atoms-in-molecules" computational tools.
Combined CSD analysis and theoretical calculations show the importance of the polarizability in chalcogen bonding interactions. We provide evidence that the Lewis base has a preference in some cases for the σ-hole that is opposite to the more polarizable group instead of the more electron withdrawing one. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c9cp01033e |