Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices

Two-dimensional transition-metal dichalcogenides (TMDCs) possess unique electronic and optical properties, which open up a new opportunity for atomically thin optoelectronic devices. Synthesizing large-scale monolayer TMDCs on the SiO2/Si substrate is crucial for practical applications, however, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-05, Vol.11 (21), p.19381-19387
Hauptverfasser: Chen, Jiajun, Shao, Kai, Yang, Weihuang, Tang, Weiqing, Zhou, Jiangpeng, He, Qinming, Wu, Yaping, Zhang, Chunmiao, Li, Xu, Yang, Xu, Wu, Zhiming, Kang, Junyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional transition-metal dichalcogenides (TMDCs) possess unique electronic and optical properties, which open up a new opportunity for atomically thin optoelectronic devices. Synthesizing large-scale monolayer TMDCs on the SiO2/Si substrate is crucial for practical applications, however, it remains a big challenge. In this work, a method which combines chemical vapor deposition (CVD) and thermal evaporation was employed to grow monolayer tungsten disulfide (WS2) crystals. Through controlling the density and the distribution of W precursors, a wafer-scale continuous uniform WS2 film was achieved, with the structural and spectral characterizations confirming a monolayer configuration and a high crystalline quality. Wafer-scale field-effect transistor arrays based on the monolayer WS2 were fabricated. The devices show superior electrical performances, and the maximal mobility is almost 1 order of magnitude higher than those of CVD-grown large-scale TMDC devices reported so far.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b04791