Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices
Two-dimensional transition-metal dichalcogenides (TMDCs) possess unique electronic and optical properties, which open up a new opportunity for atomically thin optoelectronic devices. Synthesizing large-scale monolayer TMDCs on the SiO2/Si substrate is crucial for practical applications, however, it...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-05, Vol.11 (21), p.19381-19387 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional transition-metal dichalcogenides (TMDCs) possess unique electronic and optical properties, which open up a new opportunity for atomically thin optoelectronic devices. Synthesizing large-scale monolayer TMDCs on the SiO2/Si substrate is crucial for practical applications, however, it remains a big challenge. In this work, a method which combines chemical vapor deposition (CVD) and thermal evaporation was employed to grow monolayer tungsten disulfide (WS2) crystals. Through controlling the density and the distribution of W precursors, a wafer-scale continuous uniform WS2 film was achieved, with the structural and spectral characterizations confirming a monolayer configuration and a high crystalline quality. Wafer-scale field-effect transistor arrays based on the monolayer WS2 were fabricated. The devices show superior electrical performances, and the maximal mobility is almost 1 order of magnitude higher than those of CVD-grown large-scale TMDC devices reported so far. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b04791 |