Effects of grassland afforestation on structure and function of soil bacterial and fungal communities

Grassland afforestation strongly influences the structure and function of soil microorganisms. Yet the mechanisms of how afforestation could simultaneously alter both the soil fungal and bacterial communities and its implications for ecosystem management are poorly understood, especially in nitrogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-08, Vol.676, p.396-406
Hauptverfasser: Wang, Kaibo, Zhang, Yongwang, Tang, Zhuangsheng, Shangguan, Zhouping, Chang, Fan, Jia, Feng'an, Chen, Yiping, He, Xinhua, Shi, Weiyu, Deng, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grassland afforestation strongly influences the structure and function of soil microorganisms. Yet the mechanisms of how afforestation could simultaneously alter both the soil fungal and bacterial communities and its implications for ecosystem management are poorly understood, especially in nitrogen-limited ecosystems. Using high-throughput sequencing of 16S rRNA and ITS rRNA genes, the present study investigated the changes in soil properties and soil microorganisms after afforestation of natural grasslands with Chinese pine (Pinus tabuliformis) on the Loess Plateau in China. Results showed that soil bacterial diversity had no significant differences among the grassland (GL), forest–grassland transition zone (TZ), and forestland (FL), while soil fungal diversity in the GL was significantly higher than that in the FL and TZ (P 
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.04.259