Effects of grassland afforestation on structure and function of soil bacterial and fungal communities
Grassland afforestation strongly influences the structure and function of soil microorganisms. Yet the mechanisms of how afforestation could simultaneously alter both the soil fungal and bacterial communities and its implications for ecosystem management are poorly understood, especially in nitrogen...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-08, Vol.676, p.396-406 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Grassland afforestation strongly influences the structure and function of soil microorganisms. Yet the mechanisms of how afforestation could simultaneously alter both the soil fungal and bacterial communities and its implications for ecosystem management are poorly understood, especially in nitrogen-limited ecosystems. Using high-throughput sequencing of 16S rRNA and ITS rRNA genes, the present study investigated the changes in soil properties and soil microorganisms after afforestation of natural grasslands with Chinese pine (Pinus tabuliformis) on the Loess Plateau in China. Results showed that soil bacterial diversity had no significant differences among the grassland (GL), forest–grassland transition zone (TZ), and forestland (FL), while soil fungal diversity in the GL was significantly higher than that in the FL and TZ (P |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.04.259 |