Accelerated Variational Quantum Eigensolver

The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision ε, QPE requires O(1) repetitions of circuits with depth O(1/ε), whereas each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-04, Vol.122 (14), p.140504-140504, Article 140504
Hauptverfasser: Wang, Daochen, Higgott, Oscar, Brierley, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision ε, QPE requires O(1) repetitions of circuits with depth O(1/ε), whereas each expectation estimation subroutine within VQE requires O(1/ε^{2}) samples from circuits with depth O(1). We propose a generalized VQE algorithm that interpolates between these two regimes via a free parameter α∈[0,1], which can exploit quantum coherence over a circuit depth of O(1/ε^{α}) to reduce the number of samples to O(1/ε^{2(1-α)}). Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.122.140504