Biogeochemical distribution of Pb and Zn forms in two calcareous soils affected by mycorrhizal symbiosis and alfalfa rhizosphere

Using of arbuscular mycorrhizal fungi (AMF) has emerged as a new technique to alleviate the toxic metals stress through changing their chemical behavior. The present work was conducted as a factorial arrangement based on a completely randomized design to study the inoculation effects of Glomus intra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2019-09, Vol.179, p.241-248
Hauptverfasser: Moshiri, Farhad, Ebrahimi, Hashem, Ardakani, Mohammad Reza, Rejali, Farhad, Mousavi, Seyed Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using of arbuscular mycorrhizal fungi (AMF) has emerged as a new technique to alleviate the toxic metals stress through changing their chemical behavior. The present work was conducted as a factorial arrangement based on a completely randomized design to study the inoculation effects of Glomus intraradices, Glomus mosseae and Glomus etunicatum, on Pb and Zn fractions in the rhizosphere of alfalfa by using rhizobox technique in two agricultural soils with different Zn and Pb concentrations [with low (LH) and high (HH) concentration levels]. The results showed that AMF colonization promoted plant growth and lowered the shoot and root Pb and shoot Zn concentrations in the studied soils compared to uninoculated treatments. Mycorrhizal colonization significantly increased the Ca(NO3)2- extractable Zn and ORG-Zn (respectively 500 and 59.6% more than the uninoculated treatment) and decreased the OXI-Zn (20.32% less than the none inoculated treatment) in the HH soil. By contrast, mycorrhizae slightly increased the CARB, OXI and ORG-Zn forms in the LH soil compared to the uninoculation condition. In the AMF- treated HH soil, an increase was recorded in the Ca(NO3)2- extractable Pb, EXCH-Pb and CARB-Pb (respectively, 17.65, 3.09 and 14.22% compared to the none inoculated treatment) and a decrease in the OXI and ORG-Pb forms (respectively, 28.79 and 13.51% compared to the uninoculated treatment). A reverse status was observed for Pb changes in the LH soil. Depending on the contamination level, the mycorrhizal inoculation differentially affected the Pb and Zn fractions at different distances from the root surface. In the LH soil, at  5 mm distance) while ORG-Zn was increased up to 48.63%. However, Ca(NO3)2- extractable, CARB and ORG-Pb was increased in rhizosphere soil (respectively, 89.33, 3.84 and 6.14%) and OXI-Pb was decreased up to 10.36% compared to the bulk soil. In the HH soil, mycorrhizal inoculation increased the CARB and OXI-Zn (respectively, 1.76 and 5.71%) and OXI-Pb fractions (11.56%) compared to the
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2019.04.055