Stem and Crown Rot of Chickpea in California Caused by Sclerotinia trifoliorum

The identities of Sclerotinia isolates obtained from chickpea plants showing stem and crown rot were determined using morphological characteristics, variations in group I introns, and internal transcribed spacer (ITS) sequences. Isolates could be separated into two groups based on growth rates at 22...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2008-06, Vol.92 (6), p.917-922
Hauptverfasser: Njambere, Evans N, Chen, Weidong, Frate, Carol, Wu, Bo-Ming, Temple, Steve R, Muehlbauer, Fred J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identities of Sclerotinia isolates obtained from chickpea plants showing stem and crown rot were determined using morphological characteristics, variations in group I introns, and internal transcribed spacer (ITS) sequences. Isolates could be separated into two groups based on growth rates at 22°C, fast growing (about 40 mm per day) versus slow growing (about 20 mm per day). All fast-growing isolates induced stronger color change of a pH-indicating medium than did slow-growing isolates at 22°C. The slow-growing isolates contained at least one group I intron in the nuclear small subunit rDNA, whereas all fast-growing isolates lacked group I introns in the same DNA region. ITS sequences of the slow-growing isolates were identical to sequences of Sclerotinia trifoliorum. Those of the fast-growing isolates were identical to sequences of S. sclerotiorum. Finally, the slow-growing isolates showed ascospore dimorphism, a definitive character of S. trifoliorum, whereas the fast-growing isolates showed no ascospore dimorphism. Isolates of both species were pathogenic on chickpea and caused symptoms similar to those observed in the field. This study not only associated the differences between S. sclerotiorum and S. trifoliorum in growth rates, group I introns, ITS sequences, and ascospore morphology, but also represented the first report that S. trifoliorum causes stem and crown rot of chickpea in North America.
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-92-6-0917