First Report of Maize streak virus Field Infection of Sugarcane in South Africa

Prior to the introduction of highly resistant sugarcane varieties, Sugarcane streak virus (SSV) caused serious sugar yield losses in southern Africa. Recently, sugarcane plants with streak symptoms have been identified across South Africa. Unlike the characteristic fine stippling and streaking of SS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2008-06, Vol.92 (6), p.982-982
Hauptverfasser: Van Antwerpen, T, McFarlane, S.A, Buchanan, G.F, Shepherd, D.N, Martin, D.P, Rybicki, E.P, Varsani, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prior to the introduction of highly resistant sugarcane varieties, Sugarcane streak virus (SSV) caused serious sugar yield losses in southern Africa. Recently, sugarcane plants with streak symptoms have been identified across South Africa. Unlike the characteristic fine stippling and streaking of SSV, the symptoms resembled the broader, elongated chlorotic lesions commonly observed in wild grasses infected with the related Maize streak virus (MSV). Importantly, these symptoms have been reported on a newly released South African sugarcane cultivar, N44 (resistant to SSV). Following a first report from southern KwaZulu-Natal, South Africa in February 2006, a survey in May 2007 identified numerous plants with identical symptoms in fields of cvs. N44, N27, and N36 across the entire South African sugarcane-growing region. Between 0.04 and 1.6% of the plants in infected fields had streak symptoms. Wild grass species with similar streaking symptoms were observed adjacent to one of these fields. Potted stalks collected from infected N44 plants germinated in a glasshouse exhibited streak symptoms within 10 days. Virus genomes were isolated and sequenced from a symptomatic N44 and Urochloa plantaginea plants collected from one of the surveyed fields (1). Phylogenetic analysis determined that while viruses from both plants closely resembled the South African maize-adapted MSV strain, MSV-A (>98.5% genome-wide sequence identity), they were only very distantly related to SSV (~65% identity; MSV-Sasri_S: EU152254; MSV-Sasri_G: EU152255). To our knowledge, this is the first confirmed report of maize-adapted MSV variants in sugarcane. In the 1980s, "MSV strains" were serologically identified in sugarcane plants exhibiting streak symptoms in Reunion and Mauritius, but these were not genetically characterized (2,3). There have been no subsequent reports on the impact of such MSV infections on sugarcane cultivation on these islands. Also, at least five MSV strains have now been described, only one of which, MSV-A, causes significant disease in maize and it is unknown which strain was responsible for sugarcane diseases on these islands in the 1980s (2,3). MSV-A infections could have serious implications for the South African sugar industry. Besides yield losses in infected plants due to stunting and reduced photosynthesis, the virus could be considerably more difficult to control than it is in maize because sugarcane is vegetatively propagated and individual plants remain wit
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-92-6-0982A