Urine metabolic profiles in paediatric asthma

ABSTRACT Background and objective Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. Methods Children (aged 6–11 years) meeting the criteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respirology (Carlton, Vic.) Vic.), 2019-06, Vol.24 (6), p.572-581
Hauptverfasser: Tao, Jia‐Lei, Chen, Yan‐Zhen, Dai, Qi‐Gang, Tian, Man, Wang, Shou‐Chuan, Shan, Jin‐Jun, Ji, Jian‐Jian, Lin, Li‐Li, Li, Wei‐Wei, Yuan, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue 6
container_start_page 572
container_title Respirology (Carlton, Vic.)
container_volume 24
creator Tao, Jia‐Lei
Chen, Yan‐Zhen
Dai, Qi‐Gang
Tian, Man
Wang, Shou‐Chuan
Shan, Jin‐Jun
Ji, Jian‐Jian
Lin, Li‐Li
Li, Wei‐Wei
Yuan, Bin
description ABSTRACT Background and objective Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. Methods Children (aged 6–11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography–mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma‐related genes. Results We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P 1.5 or 0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress‐related biological progression of paediatric asthma. Conclusion Metabolomic analysis of patient urine combined with network‐biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma. We investigated metabolic profiles of paediatric asthma patients to identify asthma‐specific biomarkers in urine. A combination of eight metabolites showed excellent discrimination across groups. Enrichment analysis identified complex biological processes associated with immunity, inflammation, oxidative stress and DNA damage. These approaches enabled discrimination between asthma stages and elucidate its mechanisms. See related Editorial
doi_str_mv 10.1111/resp.13479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2229107282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226335966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-a65e336a67b34f319307dd93d221114bf3001f4bc64efdf0b8e2ff3fd5343a93</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5v_AFS8EaEziQnTZtLGfMDBorO65A2CXb0y6RF9u_N7PTCC3NzwuHhPS8PQucEz0l4N874bk6ApeIATQljOCYZg8PwBwpxmgoxQSfebzDGkODkGE0ApxxExqYofnNlY6La9Cpvq7KIOtfasjI-KpuoU0aXqndhrXz_XqtTdGRV5c3Zfs7Q-m65XjzEq6f7x8XtKi5AgIgVTwwAVzzNgVkgItzTWoCmNPRluQWMiWV5wZmx2uI8M9RasDoBBkrADF2NsaHMx2B8L-vSF6aqVGPawUtKqSA4pRkN6OUfdNMOrgnldhQHSATngboeqcK13jtjZefKWrmtJFjuHMqdQ_ntMMAX-8ghr43-RX-kBYCMwGcQtf0nSr4sX5_H0C-avXo_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226335966</pqid></control><display><type>article</type><title>Urine metabolic profiles in paediatric asthma</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tao, Jia‐Lei ; Chen, Yan‐Zhen ; Dai, Qi‐Gang ; Tian, Man ; Wang, Shou‐Chuan ; Shan, Jin‐Jun ; Ji, Jian‐Jian ; Lin, Li‐Li ; Li, Wei‐Wei ; Yuan, Bin</creator><creatorcontrib>Tao, Jia‐Lei ; Chen, Yan‐Zhen ; Dai, Qi‐Gang ; Tian, Man ; Wang, Shou‐Chuan ; Shan, Jin‐Jun ; Ji, Jian‐Jian ; Lin, Li‐Li ; Li, Wei‐Wei ; Yuan, Bin</creatorcontrib><description>ABSTRACT Background and objective Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. Methods Children (aged 6–11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography–mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma‐related genes. Results We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P &lt; 0.05 and fold‐change &gt;1.5 or &lt;0.67), showed excellent discriminatory performance for the presence of asthma and the differentiation of poor‐controlled or well‐controlled asthma, and area under the curve values were &gt;0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress‐related biological progression of paediatric asthma. Conclusion Metabolomic analysis of patient urine combined with network‐biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma. We investigated metabolic profiles of paediatric asthma patients to identify asthma‐specific biomarkers in urine. A combination of eight metabolites showed excellent discrimination across groups. Enrichment analysis identified complex biological processes associated with immunity, inflammation, oxidative stress and DNA damage. These approaches enabled discrimination between asthma stages and elucidate its mechanisms. See related Editorial</description><identifier>ISSN: 1323-7799</identifier><identifier>EISSN: 1440-1843</identifier><identifier>DOI: 10.1111/resp.13479</identifier><identifier>PMID: 30763984</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amino acids ; Aspartic acid ; Asthma ; Asthma - complications ; Asthma - physiopathology ; Asthma - urine ; Biomarkers - urine ; Carbohydrate metabolism ; Case-Control Studies ; Child ; childhood ; DNA damage ; Fc receptors ; Female ; Gas chromatography ; gas chromatography–mass spectrometry ; Humans ; Hypoxanthine ; Inflammation ; Intracellular signalling ; Male ; Mass spectroscopy ; Metabolism ; Metabolites ; Metabolome ; Metabolomics ; network‐biology ; Respiratory diseases ; Signal transduction ; Stearic acid ; Uric acid ; Urine</subject><ispartof>Respirology (Carlton, Vic.), 2019-06, Vol.24 (6), p.572-581</ispartof><rights>2019 Asian Pacific Society of Respirology</rights><rights>2019 Asian Pacific Society of Respirology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-a65e336a67b34f319307dd93d221114bf3001f4bc64efdf0b8e2ff3fd5343a93</citedby><cites>FETCH-LOGICAL-c3939-a65e336a67b34f319307dd93d221114bf3001f4bc64efdf0b8e2ff3fd5343a93</cites><orcidid>0000-0002-6071-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fresp.13479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fresp.13479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30763984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Jia‐Lei</creatorcontrib><creatorcontrib>Chen, Yan‐Zhen</creatorcontrib><creatorcontrib>Dai, Qi‐Gang</creatorcontrib><creatorcontrib>Tian, Man</creatorcontrib><creatorcontrib>Wang, Shou‐Chuan</creatorcontrib><creatorcontrib>Shan, Jin‐Jun</creatorcontrib><creatorcontrib>Ji, Jian‐Jian</creatorcontrib><creatorcontrib>Lin, Li‐Li</creatorcontrib><creatorcontrib>Li, Wei‐Wei</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><title>Urine metabolic profiles in paediatric asthma</title><title>Respirology (Carlton, Vic.)</title><addtitle>Respirology</addtitle><description>ABSTRACT Background and objective Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. Methods Children (aged 6–11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography–mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma‐related genes. Results We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P &lt; 0.05 and fold‐change &gt;1.5 or &lt;0.67), showed excellent discriminatory performance for the presence of asthma and the differentiation of poor‐controlled or well‐controlled asthma, and area under the curve values were &gt;0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress‐related biological progression of paediatric asthma. Conclusion Metabolomic analysis of patient urine combined with network‐biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma. We investigated metabolic profiles of paediatric asthma patients to identify asthma‐specific biomarkers in urine. A combination of eight metabolites showed excellent discrimination across groups. Enrichment analysis identified complex biological processes associated with immunity, inflammation, oxidative stress and DNA damage. These approaches enabled discrimination between asthma stages and elucidate its mechanisms. See related Editorial</description><subject>Amino acids</subject><subject>Aspartic acid</subject><subject>Asthma</subject><subject>Asthma - complications</subject><subject>Asthma - physiopathology</subject><subject>Asthma - urine</subject><subject>Biomarkers - urine</subject><subject>Carbohydrate metabolism</subject><subject>Case-Control Studies</subject><subject>Child</subject><subject>childhood</subject><subject>DNA damage</subject><subject>Fc receptors</subject><subject>Female</subject><subject>Gas chromatography</subject><subject>gas chromatography–mass spectrometry</subject><subject>Humans</subject><subject>Hypoxanthine</subject><subject>Inflammation</subject><subject>Intracellular signalling</subject><subject>Male</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>network‐biology</subject><subject>Respiratory diseases</subject><subject>Signal transduction</subject><subject>Stearic acid</subject><subject>Uric acid</subject><subject>Urine</subject><issn>1323-7799</issn><issn>1440-1843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobk5v_AFS8EaEziQnTZtLGfMDBorO65A2CXb0y6RF9u_N7PTCC3NzwuHhPS8PQucEz0l4N874bk6ApeIATQljOCYZg8PwBwpxmgoxQSfebzDGkODkGE0ApxxExqYofnNlY6La9Cpvq7KIOtfasjI-KpuoU0aXqndhrXz_XqtTdGRV5c3Zfs7Q-m65XjzEq6f7x8XtKi5AgIgVTwwAVzzNgVkgItzTWoCmNPRluQWMiWV5wZmx2uI8M9RasDoBBkrADF2NsaHMx2B8L-vSF6aqVGPawUtKqSA4pRkN6OUfdNMOrgnldhQHSATngboeqcK13jtjZefKWrmtJFjuHMqdQ_ntMMAX-8ghr43-RX-kBYCMwGcQtf0nSr4sX5_H0C-avXo_</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Tao, Jia‐Lei</creator><creator>Chen, Yan‐Zhen</creator><creator>Dai, Qi‐Gang</creator><creator>Tian, Man</creator><creator>Wang, Shou‐Chuan</creator><creator>Shan, Jin‐Jun</creator><creator>Ji, Jian‐Jian</creator><creator>Lin, Li‐Li</creator><creator>Li, Wei‐Wei</creator><creator>Yuan, Bin</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6071-8925</orcidid></search><sort><creationdate>201906</creationdate><title>Urine metabolic profiles in paediatric asthma</title><author>Tao, Jia‐Lei ; Chen, Yan‐Zhen ; Dai, Qi‐Gang ; Tian, Man ; Wang, Shou‐Chuan ; Shan, Jin‐Jun ; Ji, Jian‐Jian ; Lin, Li‐Li ; Li, Wei‐Wei ; Yuan, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-a65e336a67b34f319307dd93d221114bf3001f4bc64efdf0b8e2ff3fd5343a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Aspartic acid</topic><topic>Asthma</topic><topic>Asthma - complications</topic><topic>Asthma - physiopathology</topic><topic>Asthma - urine</topic><topic>Biomarkers - urine</topic><topic>Carbohydrate metabolism</topic><topic>Case-Control Studies</topic><topic>Child</topic><topic>childhood</topic><topic>DNA damage</topic><topic>Fc receptors</topic><topic>Female</topic><topic>Gas chromatography</topic><topic>gas chromatography–mass spectrometry</topic><topic>Humans</topic><topic>Hypoxanthine</topic><topic>Inflammation</topic><topic>Intracellular signalling</topic><topic>Male</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>network‐biology</topic><topic>Respiratory diseases</topic><topic>Signal transduction</topic><topic>Stearic acid</topic><topic>Uric acid</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Jia‐Lei</creatorcontrib><creatorcontrib>Chen, Yan‐Zhen</creatorcontrib><creatorcontrib>Dai, Qi‐Gang</creatorcontrib><creatorcontrib>Tian, Man</creatorcontrib><creatorcontrib>Wang, Shou‐Chuan</creatorcontrib><creatorcontrib>Shan, Jin‐Jun</creatorcontrib><creatorcontrib>Ji, Jian‐Jian</creatorcontrib><creatorcontrib>Lin, Li‐Li</creatorcontrib><creatorcontrib>Li, Wei‐Wei</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Respirology (Carlton, Vic.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Jia‐Lei</au><au>Chen, Yan‐Zhen</au><au>Dai, Qi‐Gang</au><au>Tian, Man</au><au>Wang, Shou‐Chuan</au><au>Shan, Jin‐Jun</au><au>Ji, Jian‐Jian</au><au>Lin, Li‐Li</au><au>Li, Wei‐Wei</au><au>Yuan, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urine metabolic profiles in paediatric asthma</atitle><jtitle>Respirology (Carlton, Vic.)</jtitle><addtitle>Respirology</addtitle><date>2019-06</date><risdate>2019</risdate><volume>24</volume><issue>6</issue><spage>572</spage><epage>581</epage><pages>572-581</pages><issn>1323-7799</issn><eissn>1440-1843</eissn><abstract>ABSTRACT Background and objective Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. Methods Children (aged 6–11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography–mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma‐related genes. Results We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P &lt; 0.05 and fold‐change &gt;1.5 or &lt;0.67), showed excellent discriminatory performance for the presence of asthma and the differentiation of poor‐controlled or well‐controlled asthma, and area under the curve values were &gt;0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress‐related biological progression of paediatric asthma. Conclusion Metabolomic analysis of patient urine combined with network‐biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma. We investigated metabolic profiles of paediatric asthma patients to identify asthma‐specific biomarkers in urine. A combination of eight metabolites showed excellent discrimination across groups. Enrichment analysis identified complex biological processes associated with immunity, inflammation, oxidative stress and DNA damage. These approaches enabled discrimination between asthma stages and elucidate its mechanisms. See related Editorial</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>30763984</pmid><doi>10.1111/resp.13479</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6071-8925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1323-7799
ispartof Respirology (Carlton, Vic.), 2019-06, Vol.24 (6), p.572-581
issn 1323-7799
1440-1843
language eng
recordid cdi_proquest_miscellaneous_2229107282
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino acids
Aspartic acid
Asthma
Asthma - complications
Asthma - physiopathology
Asthma - urine
Biomarkers - urine
Carbohydrate metabolism
Case-Control Studies
Child
childhood
DNA damage
Fc receptors
Female
Gas chromatography
gas chromatography–mass spectrometry
Humans
Hypoxanthine
Inflammation
Intracellular signalling
Male
Mass spectroscopy
Metabolism
Metabolites
Metabolome
Metabolomics
network‐biology
Respiratory diseases
Signal transduction
Stearic acid
Uric acid
Urine
title Urine metabolic profiles in paediatric asthma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urine%20metabolic%20profiles%20in%20paediatric%20asthma&rft.jtitle=Respirology%20(Carlton,%20Vic.)&rft.au=Tao,%20Jia%E2%80%90Lei&rft.date=2019-06&rft.volume=24&rft.issue=6&rft.spage=572&rft.epage=581&rft.pages=572-581&rft.issn=1323-7799&rft.eissn=1440-1843&rft_id=info:doi/10.1111/resp.13479&rft_dat=%3Cproquest_cross%3E2226335966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226335966&rft_id=info:pmid/30763984&rfr_iscdi=true