A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area
Coastal cities around the world have experienced large costs from major flooding events in recent years. Climate change is predicted to bring an increased likelihood of flooding due to sea level rise and more frequent severe storms. In order to plan future development and adaptation, cities must kno...
Gespeichert in:
Veröffentlicht in: | Risk analysis 2019-06, Vol.39 (6), p.1314-1341 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coastal cities around the world have experienced large costs from major flooding events in recent years. Climate change is predicted to bring an increased likelihood of flooding due to sea level rise and more frequent severe storms. In order to plan future development and adaptation, cities must know the magnitude of losses associated with these events, and how they can be reduced. Often losses are calculated from insurance claims or surveying flood victims. However, this largely neglects the loss due to the disruption of economic activity. We use a forward‐looking dynamic computable general equilibrium model to study how a local economy responds to a flood, focusing on the subsequent recovery/reconstruction. Initial damage is modeled as a shock to the capital stock and recovery requires rebuilding that stock. We apply the model to Vancouver, British Columbia by considering a flood scenario causing total capital damage of $14.6 billion spread across five municipalities. GDP loss relative to a no‐flood scenario is relatively long‐lasting. It is 2.0% ($2.2 billion) in the first year after the flood, 1.7% ($1.9 billion) in the second year, and 1.2% ($1.4 billion) in the fifth year. |
---|---|
ISSN: | 0272-4332 1539-6924 |
DOI: | 10.1111/risa.13285 |