Integrated Control of Root and Crown Rot in Sugar Beet: Combined Effects of Cultivar, Crop Rotation, and Soil Tillage

Rhizoctonia solani (AG 2-2IIIB), causing root and crown rot in sugar beet, poses an increasing problem in Europe. Agronomic measures have to be optimized to control disease and minimize yield and quality loss, because no fungicides can be applied. Resistant sugar beet cultivars have been introduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2009-02, Vol.93 (2), p.155-161
Hauptverfasser: Buhre, Cord, Kluth, Christian, Burcky, Klaus, Marlander, Bernward, Varrelmann, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhizoctonia solani (AG 2-2IIIB), causing root and crown rot in sugar beet, poses an increasing problem in Europe. Agronomic measures have to be optimized to control disease and minimize yield and quality loss, because no fungicides can be applied. Resistant sugar beet cultivars have been introduced to reduce disease occurrence. Furthermore, crop rotation can influence R. solani occurrence. In contrast to other cereals, maize serves as a host of the fungus. In order to study the combined effect of these factors, a series of four field trials was established with crop rotations varying in the proportion of maize and comparing a resistant with a susceptible sugar beet cultivar in 2001-02 in southern Germany. Within crop rotations, cultivation methods were varied in the form of soil tillage, intercrops, or both. Sugar beet cultivar and crop rotation had the main impact on disease severity and sugar yield. With increasing proportion of maize, sugar yield decreased, whereas cultivation method had only a minor impact. Plowing directly before sugar beet increased sugar yield only within the unfavorable maize-maize-sugar beet rotation compared with mulching. These results give strong evidence that crop rotation of sugar beet with nonhost plants and cultivation of resistant sugar beet cultivars are adequate means for integrated R. solani control.
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-93-2-0155