Enhancement of embryogenic culture initiation from tissues of mature sweetgum trees
Male inflorescences, female inflorescences, and leaves collected from dormant buds of three sweetgum (Liquidambar styraciflua) trees were tested for induction of somatic embryogenesis following treatment with thidiazuron, naphthaleneacetic acid (NAA) or different combinations of the two. Explants we...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2000-01, Vol.19 (3), p.268-273 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Male inflorescences, female inflorescences, and leaves collected from dormant buds of three sweetgum (Liquidambar styraciflua) trees were tested for induction of somatic embryogenesis following treatment with thidiazuron, naphthaleneacetic acid (NAA) or different combinations of the two. Explants were placed into culture either within a few days after collection or following 2 months of storage at -15 °C. Although embryogenic cultures were obtained from all three trees, embryogenesis induction was strongly affected by genotype (source tree), with 100% of the staminate inflorescence explants from one tree producing embryogenic cultures in one experiment. Embryogenesis induction was also influenced by explant type, with staminate inflorescences up to five times more likely to produce an embryogenic culture than female inflorescences. No embryogenic cultures were obtained from leaf explants. While treatment with plant growth regulators was not required for embryogenesis induction from inflorescence explants, culture on medium with NAA alone resulted in the highest production of repetitively embryogenic cultures and cultures producing proembryogenic masses. Dormant buds stored for 2 months at -15 °C were still able to produce embryogenic cultures, although frozen storage decreased this ability by over one-half for staminate inflorescences. |
---|---|
ISSN: | 0721-7714 1432-203X |
DOI: | 10.1007/s002990050010 |