Rhodium(ii)-catalyzed C-H aminations using N -mesyloxycarbamates: reaction pathway and by-product formation

-Mesyloxycarbamates are practical nitrene precursors that undergo C-H amination reactions in the presence of rhodium dimer catalysts. Under these conditions, both oxazolidinones and chiral amines have been prepared in a highly efficient manner. Given the elevated reactivity of the intermediates invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-01, Vol.10 (3), p.718-729
Hauptverfasser: Azek, Emna, Khalifa, Maroua, Bartholoméüs, Johan, Ernzerhof, Matthias, Lebel, Hélène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:-Mesyloxycarbamates are practical nitrene precursors that undergo C-H amination reactions in the presence of rhodium dimer catalysts. Under these conditions, both oxazolidinones and chiral amines have been prepared in a highly efficient manner. Given the elevated reactivity of the intermediates involved in the catalytic cycle, mechanistic details have remained hypothetical, relying on indirect experiments. Herein a density functional theory (DFT) study is presented to validate the catalytic cycle of the rhodium-catalyzed C-H amination with -mesyloxycarbamates. A concerted pathway involving Rh-nitrene species that undergoes C-H insertion is found to be favored over a stepwise C-N bond formation manifold. Density functional calculations and kinetic studies suggest that the rate-limiting step is the C-H insertion process rather than the formation of Rh-nitrene species. In addition, these studies provide mechanistic details about competitive by-product formation, resulting from an intermolecular reaction between the Rh-nitrene species and the -mesyloxycarbamate anion.
ISSN:2041-6520
2041-6539
DOI:10.1039/c8sc03153c