First Report of Lasiodiplodia citricola and Neoscytalidium dimidiatum Causing Death of Graft Union of English Walnut in California

California produces 99% of the English walnuts (Juglans regia) in the USA. In August 2012 in Tulare County, about 5,000 out of 90,000 trees were killed in a walnut nursery by a distinct black canker that developed around the graft union. The cankers appeared to be initiated at the heading cut on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2013-07, Vol.97 (7), p.993-993
Hauptverfasser: Chen, S F, Fichtner, E, Morgan, D P, Michailides, T J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:California produces 99% of the English walnuts (Juglans regia) in the USA. In August 2012 in Tulare County, about 5,000 out of 90,000 trees were killed in a walnut nursery by a distinct black canker that developed around the graft union. The cankers appeared to be initiated at the heading cut on the rootstock, and expanded down to the rootstock and through the budded union up to the scion, resulting in mortality of scion. The walnut nursery was located adjacent to a mature walnut orchard. The fungi isolated from the cankers were identified as Lasiodiplodia citricola and Neoscytalidium dimidiatum based on morphological characteristics and DNA sequence comparisons. L. citricola was isolated from one of the 10 graft unions, while N. dimidiatum from the other nine. L. citricola isolates were characterized by white, aerial mycelium on potato dextrose agar that turned gray after 4 days and produced ellipsoidal to ovoid hyaline one-celled conidia that became 2-celled and brown with thick walls and longitudinal striations in the wall (1). N. dimidiatum isolates were characterized by ellipsoid to ovoid, hyaline conidia with a truncate base and an acutely rounded apex, initially 1-celled, and some becoming brown and 2-celled at maturity; no muriform conidia were produced (3). These identifications were confirmed by analyses of the ITS, BT2, and TEF-1α gene regions. The three gene regions were amplified by using the primers and methods described in (4). For L. citricola (isolates 7E78 to 7E80), a DNA sequence BLASTn at GenBank showed 100% identity with accessions GU945354 (ITS) and GU945340 (TEF-1α) of the ex-type specimen (CBS124707, BT2 sequencing data was not available) (3). For N. dimidiatum (isolates 7E61 to 7E63), a BLASTn search showed a high identify (ITS, 100%; BT2, 99%; TEF-1α, 99%) with reference sequence of N. dimidiatum (ITS, GQ330903; BT2, GU251768; TEF-1α, GU251240). Sequences of the studied DNA regions were deposited to GenBank as KC357298 to KC357303 (ITS); KC357304 to KC357309 (BT2); and, KC357310 to KC357315 (TEF-1α). The pathogenicity of L. citricola in comparison with N. dimidiatum in J. regia cvs. Chandler, Tulare, and Vina was evaluated in an orchard at KARE, by using two isolates each of L. citricola (7E78, 7E80) and N. dimidiatum (7E61, 7E63). Pathogenicity tests were performed by inoculating ten 2-year-old branches per isolate in late September 2012 by the method described in (2). After 3 weeks, the average lesion lengths caused by L. citric
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-10-12-1000-PDN