Bounded Collection of Feynman Integral Calabi-Yau Geometries
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L-1) at L loops provided they are in the class that we call marginal: those with (L+1)D/2 propagator...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-01, Vol.122 (3), p.031601-031601, Article 031601 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L-1) at L loops provided they are in the class that we call marginal: those with (L+1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless φ^{4} theory that saturate our predicted bound in rigidity at all loop orders. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.031601 |