Bounded Collection of Feynman Integral Calabi-Yau Geometries

We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L-1) at L loops provided they are in the class that we call marginal: those with (L+1)D/2 propagator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-01, Vol.122 (3), p.031601-031601, Article 031601
Hauptverfasser: Bourjaily, Jacob L, McLeod, Andrew J, von Hippel, Matt, Wilhelm, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L-1) at L loops provided they are in the class that we call marginal: those with (L+1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless φ^{4} theory that saturate our predicted bound in rigidity at all loop orders.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.122.031601