A Rutile TiO2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells

Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-07, Vol.58 (28), p.9414-9418
Hauptverfasser: Wang, Yongling, Wan, Jiawei, Ding, Jie, Hu, Jin‐Song, Wang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V. A rutile TiO2 electron transport layer (ETL) was prepared. The thickness and crystallinity can be controlled by deposition time and sintering temperature. Rutile TiO2 has higher conductivity than anatase for faster electron transfer, better interface contact with the perovskite layer, and a lower trap density. These facilitate the charge extraction and collection and reducing carrier recombination.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201902984