Analyzing Microbial Population Heterogeneity—Expanding the Toolbox of Microfluidic Single-Cell Cultivations

Recent research on population heterogeneity revealed fascinating insights into microbial behavior. In particular emerging single-cell technologies, image-based microfluidics lab-on-chip systems generate insights with spatio-temporal resolution, which are inaccessible with conventional tools. This re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2019-11, Vol.431 (23), p.4569-4588
Hauptverfasser: Leygeber, Markus, Lindemann, Dorina, Sachs, Christian Carsten, Kaganovitch, Eugen, Wiechert, Wolfgang, Nöh, Katharina, Kohlheyer, Dietrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent research on population heterogeneity revealed fascinating insights into microbial behavior. In particular emerging single-cell technologies, image-based microfluidics lab-on-chip systems generate insights with spatio-temporal resolution, which are inaccessible with conventional tools. This review reports recent developments and applications of microfluidic single-cell cultivation technology, highlighting fields of broad interest such as growth, gene expression and antibiotic resistance and susceptibility. Combining advanced microfluidic single-cell cultivation technology for environmental control with automated time-lapse imaging as well as smart computational image analysis offers tremendous potential for novel investigation at the single-cell level. We propose on-chip control of parameters like temperature, gas supply, pressure or a change in cultivation mode providing a versatile technology platform to mimic more complex and natural habitats. Digital analysis of the acquired images is a requirement for the extraction of biological knowledge and statistically reliable results demand for robust and automated solutions. Focusing on microbial cultivations, we compare prominent software systems that emerged during the last decade, discussing their applicability, opportunities and limitations. Next-generation microfluidic devices with a high degree of environmental control combined with time-lapse imaging and automated image analysis will be highly inspiring and beneficial for fruitful interdisciplinary cooperation between microbiologists and microfluidic engineers and image analysts in the field of microbial single-cell analysis. [Display omitted] •Recent studies on microbial phenotypic heterogeneity applying microfluidic single-cell cultivations and image analysis.•On-chip environmental control offers tremendous potential to mimic dynamic and complex habitats.•Prominent image analysis tools are evaluated and discussed.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2019.04.025