Neuroprotective effects of isoliquiritigenin against cognitive impairment via suppression of synaptic dysfunction, neuronal injury, and neuroinflammation in rats with kainic acid-induced seizures
Epileptogenesis is a dynamic process initiated by insults to brain and commonly accompanied by cognitive impairment. Isoliquiritigenin (ISL), a flavonoid in licorice, has a broad spectrum of biological effects including anti-inflammatory and antioxidant activities. However, the protective effects of...
Gespeichert in:
Veröffentlicht in: | International immunopharmacology 2019-07, Vol.72, p.358-366 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epileptogenesis is a dynamic process initiated by insults to brain and commonly accompanied by cognitive impairment. Isoliquiritigenin (ISL), a flavonoid in licorice, has a broad spectrum of biological effects including anti-inflammatory and antioxidant activities. However, the protective effects of ISL against cognitive impairment in epileptic processes and the underlying molecular mechanism are not well understood. To address these questions, we established an reproducible seizure model by intracerebroventricular injection of kainic acid (KA) in 21-day-old rats; ISL was intraperitoneally administered three times prior to KA injection, and changes in cognitive function; synaptic plasticity; neuronal injury; number of glial cells; and expression of pro-inflammatory cytokines and nuclear factor-like (NRF)2 signaling and NACHT, LRR, and PYD domains-containing protein (NLRP)3 inflammasome components in the hippocampus were examined. Rats with KA-induced seizures showed longer average escape latency and decreases in the number of platform crossings and average time spent in the target quadrant in the Morris water maze; ISL pretreatment reversed this decline in cognitive impairment and increased the protein levels of synaptophysin, postsynaptic density-95 and brain-derived neurotrophic factor while reducing the number of Fluoro Jade B-positive cells, microglia, and astrocytes; cleaved-Caspase-3 and -9 protein levels; and tumor necrosis factor-α, interleukin (IL)-1β, and IL-18 production. It also enhanced the nuclear localization of NRF2, hemeoxygenase-1, and NAD(P)H:quinone oxidoreductase (NQO) 1, and reversed the upregulation of NLRP3 inflammasome components NLRP3 and Caspase-1 induced by KA injection. Thus, ISL protects against cognitive impairment in KA-induced epileptic processes possibly through regulation of NRF2 signaling and the NLRP3 inflammasome pathway.
•ISL prevents cognitive impairment in kainic acid-induced seizure model rats.•ISL reverses synaptic dysfunction and alleviates neuronal injury.•ISL attenuates microglia and astrocyte activation and release of TNF-α, IL-1β, IL-18.•Protective effects of ISL might be mediated by NRF2 and NLRP3 inflammasome pathway. |
---|---|
ISSN: | 1567-5769 1878-1705 |
DOI: | 10.1016/j.intimp.2019.04.028 |