Additive manufacturing of biodegradable metals: Current research status and future perspectives

[Display omitted] The combination of biodegradable metals and additive manufacturing (AM) leads to a revolutionary change of metal implants in many aspects including materials, design, manufacturing, and clinical applications. The AM of nondegradable metals such as titanium and CoCr alloys has prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2019-10, Vol.98, p.3-22
Hauptverfasser: Qin, Yu, Wen, Peng, Guo, Hui, Xia, Dandan, Zheng, Yufeng, Jauer, Lucas, Poprawe, Reinhart, Voshage, Maximilian, Schleifenbaum, Johannes Henrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The combination of biodegradable metals and additive manufacturing (AM) leads to a revolutionary change of metal implants in many aspects including materials, design, manufacturing, and clinical applications. The AM of nondegradable metals such as titanium and CoCr alloys has proven to be a tremendous success in clinical applications. The AM of biodegradable metals including magnesium (Mg), iron (Fe), and zinc (Zn) is still in its infancy, although much progress has been made in the research field. Element loss and porosity are common processing problems for AM of biodegradable metals like Zn and Mg, which are mainly caused by evaporation during melting under a high-energy beam. The resulting formation quality and properties are closely related to material, design, and processing, making AM of biodegradable metals a typical interdisciplinary subject involving biomaterials, mechanical engineering, and medicine. This work reviews the state of research and future perspective on AM of biodegradable metals from extensive viewpoints such as material, processing, formation quality, design, microstructure, and properties. Effects of powder properties and processing parameters on formation quality are characterized in detail. The microstructure and metallurgical defects encountered in the AM parts are described. Mechanical and biodegradable properties of AM samples are introduced. Design principles and potential applications of biodegradable metal implants produced by AM are discussed. Finally, current research status is summarized together with some proposed future perspectives for advancing knowledge about AM of biodegradable metals. Rapid development of research and applications on biodegradable metals and additive manufacturing (AM) has been made in recent years. Customized geometric shapes of medical metals with porous structure can be realized accurately and efficiently by laser powder bed fusion (L-PBF), which is beneficial to achieve reliable stress conduction and balanced properties. This review introduces the development history and current status of AM of biodegradable metals and then critically surveys L-PBF of Mg-, Fe-, and Zn-based metals from multiple viewpoints including materials, processing, formation quality, structural design, microstructure, and mechanical and biological properties. The present findings are summarized together with some proposed future challenges for advancing AM of biodegradable metals into real clinical appl
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2019.04.046