Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate

[Display omitted] Albeit its well known potency as a postmenopausal osteoporosis treatment, Risedronate suffers from poor oral bioavailability and high oral toxicity. This is the first work to assess the potential of bilosomes to address challenges of RS oral delivery. Furthermore, impact of integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2019-06, Vol.564, p.410-425
Hauptverfasser: Elnaggar, Yosra S.R., Omran, Sara, Hazzah, Heba A., Abdallah, Ossama Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Albeit its well known potency as a postmenopausal osteoporosis treatment, Risedronate suffers from poor oral bioavailability and high oral toxicity. This is the first work to assess the potential of bilosomes to address challenges of RS oral delivery. Furthermore, impact of integrating cationic moiety into bilosomes on intestinal digestability and toxicity of RS nanovesicles was first investigated in this article. Prepared formulations were optimized based on physicochemical properties, digestibility, intestinal permeation and local toxicity studies. Optimized preparations were prepared by reversed phase evaporation technique with three extrusion cycles and loaded by 10 mg/ml RS. Molar lipid to bile salt to cholesterol ratio was adjusted to 4:1:1 at pH 5. Addition of cholesterol had significantly improved bilosomes stability to digestive media. Results also revealed that permeation of anionic vesicles increased permeation by 1.5 times more than RS solution and reduced drug toxicity by 2 folds. On the other hand, Cationic bilosomes showed good stability in GIT fluids but their induced oral toxicity could limit their use. In conclusion, bilosomes are superior over liposomes regarding protection of delivery system from the damaging effect of external in digestive bile salts. In addition, it decreases toxicity issues of orally administered drugs.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2019.04.069