Long-term type 1 diabetes mellitus creates a pro-atherogenic environment conducive to early atherosclerosis in rats
Experimental models are essential for clarifying the pathogenesis of atherosclerosis in the context of diabetes mellitus (DM). We aimed to evaluate the presence and the magnitude of several factors known to promote atherogenesis, and to assess the potential of a pro-atherogenic environment to stimul...
Gespeichert in:
Veröffentlicht in: | Malaysian journal of pathology 2019-04, Vol.41 (1), p.25-32 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental models are essential for clarifying the pathogenesis of atherosclerosis in the context of diabetes mellitus (DM). We aimed to evaluate the presence and the magnitude of several factors known to promote atherogenesis, and to assess the potential of a pro-atherogenic environment to stimulate the development of atherosclerotic lesions in a rat model of long-term type 1 DM.
Six control and five DM Wistar rats were evaluated. DM was induced at 11 weeks of age using streptozotocin (STZ; 60 mg/kg, intraperitoneal). Animals were monitored up to 38 weeks of age, when plasma glucose, lipid profile, and markers specific for systemic inflammation, endothelial dysfunction, and oxidative stress were measured. The amount of fat within the aortic wall was assessed semiquantitatively using Oil Red O staining.
Diabetic rats presented significantly higher plasma glucose (p < 0.001), total cholesterol and triglycerides (both p = 0.02), high-sensitivity C-reactive protein (p = 0.01), and vascular endothelial growth factor (p = 0.04) levels, and significantly lower interleukin-10 (p = 0.04), superoxide dismutase (p < 0.01), and glutathione peroxidase (p = 0.01) levels than the control rats. Mild (grade 1) atherosclerotic lesions were observed in the aortic wall of 80% of the diabetic rats and in none of the control rats.
This study presents a STZ-induced type 1 DM rat model with one of the longest follow-ups in the literature. In this model, long-term DM created a highly pro-atherogenic environment characterised by hyperglycemia, dyslipidemia, systemic inflammation, endothelial dysfunction, and oxidative stress that resulted in the development of early aortic atherosclerotic lesions. |
---|---|
ISSN: | 0126-8635 |