Alcohol dependence treating agent, acamprosate, prevents traumatic brain injury-induced neuron death through vesicular zinc depletion

Acamprosate, also known as N-acetyl homotaurine, is an N-methyl-d-aspartate receptor antagonist that is used for treating alcohol dependence. Although the exact mechanism of acamprosate has not been clearly established, it appears to work by promoting a balance between the excitatory and inhibitory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational research : the journal of laboratory and clinical medicine 2019-05, Vol.207, p.1-18
Hauptverfasser: Choi, Bo Young, Lee, Song Hee, Choi, Hui Chul, Lee, Sang-Kyu, Yoon, Hyo Seop, Park, Jae Bong, Chung, Won Suk, Suh, Sang Won
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acamprosate, also known as N-acetyl homotaurine, is an N-methyl-d-aspartate receptor antagonist that is used for treating alcohol dependence. Although the exact mechanism of acamprosate has not been clearly established, it appears to work by promoting a balance between the excitatory and inhibitory neurotransmitters, glutamate, and gamma-aminobutyric acid, respectively. Several studies have demonstrated that acamprosate provides neuroprotection against ischemia-induced brain injury. However, no studies have been performed evaluating the effect of acamprosate on traumatic brain injury (TBI). In the present study, we sought to evaluate the therapeutic potential of acamprosate to protect against neuronal death following TBI. Rats were given oral acamprosate (200 mg/kg/d for 2weeks) and then subjected to a controlled cortical impact injury localized over the parietal cortex. Histologic analysis was performed at 3hours, 24hours, and 7days after TBI. We found that acamprosate treatment reduced the concentration of vesicular glutamate and zinc in the hippocampus. Consequently, this reduced vesicular glutamate and zinc level resulted in a reduction of reactive oxygen species production after TBI. When evaluated 24hours after TBI, acamprosate administration reduced the number of degenerating neurons, zinc accumulation, blood–brain barrier disruption, neutrophil infiltration, and dendritic loss. Acamprosate also reduced glial activation and neuronal loss at 7days after TBI. In addition, acamprosate rescued TBI-induced neurologic and cognitive dysfunction. The present study demonstrates that acamprosate attenuates TBI-induced brain damage by depletion of vesicular glutamate and zinc levels. Therefore, this study suggests that acamprosate may have high therapeutic potential for prevention of TBI-induced neuronal death.
ISSN:1931-5244
1878-1810
DOI:10.1016/j.trsl.2019.01.002