MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1

Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases ( fads2 ) in the rabbitfish Siganus canaliculatus , but the specific mechanism is unknown. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2019-08, Vol.21 (4), p.475-487
Hauptverfasser: Sun, Jun Jun, Zheng, Li Guo, Chen, Cui Ying, Zhang, Jin Ying, You, Cui Hong, Zhang, Qing Hao, Ma, Hong Yu, Monroig, Óscar, Tocher, Douglas R., Wang, Shu Qi, Li, Yuan You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases ( fads2 ) in the rabbitfish Siganus canaliculatus , but the specific mechanism is unknown. Here, we confirmed that miR-33 could target the 3′UTR of insulin-induced gene 1 ( insig1 ), resulting in downregulation of its protein level in the rabbitfish hepatocyte line (SCHL). In vitro overexpression of miR-33 inhibited the mRNA level of insig1 and increased the mRNA levels of Δ6Δ5 fads2 and elovl5 , as well as srebp1 . In SCHL cells, proteolytic activation of sterol-regulatory-element-binding protein-1 (Srebp1) was blocked by Insig1, with overexpression of insig1 decreasing mature Srebp1 level, while inhibition of insig1 led to the opposite effect. Srebp1 could enhance the promoter activity of Δ6Δ5 fads2 and elovl5 , whose expression levels decreased with knockdown of srebp1 in SCHL. Overexpression of miR-33 also resulted in a higher conversion of 18:3n-3 to 18:4n-3 and 20:5n-3 to 22:5n-3, linked to desaturation and elongation via Δ6Δ5 Fads2 and Elovl5, respectively. The results suggested that the mechanism by which miR-33 regulates LC-PUFA biosynthesis in rabbitfish is through enhancing the expression of srebp1 by targeting insig1 . The findings here provide more insight to the mechanism of miRNAs involvement in the regulation of LC-PUFA biosynthesis in teleosts.
ISSN:1436-2228
1436-2236
DOI:10.1007/s10126-019-09895-w