Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels
The dietary energy level can affect ruminal microbiota, and further can affect rumen fermentation and fatty acid (FA) synthesis. In this study, we investigated the correlations between rumen bacteria and rumen fermentation parameters and intramuscular fat (IMF) FA profiles of Holstein bulls fed diff...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2019-06, Vol.103 (12), p.4931-4942 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dietary energy level can affect ruminal microbiota, and further can affect rumen fermentation and fatty acid (FA) synthesis. In this study, we investigated the correlations between rumen bacteria and rumen fermentation parameters and intramuscular fat (IMF) FA profiles of Holstein bulls fed different energy diets via using 16S rRNA high-throughput sequencing and gas chromatography. The results showed that the improved dietary energy increased propionate, isobutyrate and isovalerate concentrations, and decreased acetate concentration and the acetate/propionate ratio. Increased dietary energy improved beef IMF content and had no effects on cooking loss, Warner-Bratzler shear force, water holding capacity, or drip loss. Increase dietary energy also decreased C18:0, C18:1
trans
, C22:0, C20:3n-3, C22:6n-3, and saturated fatty acids, and increased C18:1
cis
-9, C18:2n-6
trans
, and monounsaturated fatty acids. 16S rRNA high-throughput sequencing analysis revealed that dietary energy had no impact on alpha diversity or the relative abundance of most of the major phyla and genera in rumen. In all dietary treatment groups, the dominant microbial phyla were
Bacteroidetes
(54.91%) and
Firmicutes
(33.60%), and the major microbial genus was
Prevotella_1
(21.75%). Improved dietary energy decreased the abundances of
Firmicutes
and
Tenericutes
and increased that of
Proteobacteria
at the phylum level, while decreasing those of
RC9_gut_group
, and increased
Prevotellaceae_UCG-004
,
Phocaeicola
,
Acetitomaculum
,
Lachnoclostridium_1
,
Prevotellaceae_UCG-003
, and
Anaerovibrio
at the genus level. Spearman correlation analysis showed high correlations between rumen bacteria and fermentation parameters/IMF FA profiles. Collectively, our data indicated that dietary energy affects the ruminal microbiota, and further affects ruminal fermentation and IMF FA composition. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-019-09839-3 |