Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film

Recently, smart adhesive superhydrophobic surfaces have attracted much attention. However, it is still a challenge to obtain a superhydrophobic surface with shape memory adhesive performance. Herein, inspired by the special back-scrolling/unfolding ability of gecko toe pads and corresponding tunable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-05, Vol.11 (18), p.8984-8993
Hauptverfasser: Wang, Yongzhen, Lai, Hua, Cheng, Zhongjun, Zhang, Haiyang, Zhang, Enshuang, Lv, Tong, Liu, Yuyan, Jiang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, smart adhesive superhydrophobic surfaces have attracted much attention. However, it is still a challenge to obtain a superhydrophobic surface with shape memory adhesive performance. Herein, inspired by the special back-scrolling/unfolding ability of gecko toe pads and corresponding tunable adhesion, we report such a film produced by sticking a layer of superhydrophobic pillar structured polyurethane (s-PU) onto a shape memory polyurethane-cellulose nanofiber (PU-CNF) substrate to mimic the hair-like skin structure and underlying muscle of the gecko toe pads, respectively. Similar to the muscle of the gecko toe pads, the excellent shape memory effect of the PU-CNF substrate can help the obtained film to memorize and repeatedly display different shapes and solid/water contact models. Thus reversible switching between multiple states from the low-adhesive rolling performance to the high-adhesive pinning performance can be realized. Meanwhile, based on its smart wetting performance, not only the traditional in situ capture/release of one microdroplet, but also the step-by-step release of different droplets can be realized on our film. This work reports a new superhydrophobic shape memory adhesive film, which offers a novel strategy for surface adhesion control and meanwhile opens a new road for applications in controlled droplet manipulation.
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr00154a