Alpha 2 adrenoceptor agonist guanabenz directly inhibits hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels in mesencephalic trigeminal nucleus neurons

Alpha 2 (α2-) adrenoceptor agonists, such as clonidine or dexmedetomidine, have been found to inhibit hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels, not only by reducing intracellular cyclic AMP levels but also by directly blocking HCN channels. In this study, we examined t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2019-07, Vol.854, p.320-327
Hauptverfasser: Won, Jonghwa, Lee, Pa Reum, Oh, Seog Bae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alpha 2 (α2-) adrenoceptor agonists, such as clonidine or dexmedetomidine, have been found to inhibit hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels, not only by reducing intracellular cyclic AMP levels but also by directly blocking HCN channels. In this study, we examined the inhibitory effect of guanabenz, a centrally acting α2-adrenoceptor agonist with high specificity for α2A-subtype, on HCN channels in mesencephalic trigeminal nucleus (MTN) neurons which robustly express HCN channels and have been suggested to coexpress α2A-adrenoceptors. By performing whole-cell patch-clamp recording on MTN neurons in brainstem slices, hyperpolarization-activated inward current (Ih) was examined during guanabenz treatment. Guanabenz inhibited Ih in a dose-dependent manner, which was likely to be ZD7288-sensitive HCN current as it did not affect barium-sensitive inward rectifying potassium current. Guanabenz not only inhibited Ih but also shifted the voltage-dependent activation curve to hyperpolarizing potentials. Interestingly, Ih inhibition by guanabenz was not reversed by α2-adrenoceptor antagonist atipamezole treatment or by intracellular cyclic AMP perfusion, suggesting that the inhibition may not result from α2A-adrenoceptor signalling pathway but from direct inhibition of HCN channels. Coherent to our electrophysiological results, single-cell RT-PCR revealed that most MTN neurons lack α2A-adrenoceptor mRNA. Our study demonstrates that guanabenz can directly inhibit HCN channels in addition to its primary role of activating α2A-adrenoceptors.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2019.04.036