Mapping the Secretome and Its N‑Linked Glycosylation of Pleurotus eryngii and Pleurotus ostreatus Grown on Hemp Stalks
Our previous research showed that Pleurotus eryngii and Pleurotus ostreatus were effective fungi for pretreatment of industrial hemp stalks to improve enzymatic saccharification. The secretomes of these two fungi were analyzed to search for the effective enzyme cocktails degrading hemp lignin during...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2019-05, Vol.67 (19), p.5486-5495 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our previous research showed that Pleurotus eryngii and Pleurotus ostreatus were effective fungi for pretreatment of industrial hemp stalks to improve enzymatic saccharification. The secretomes of these two fungi were analyzed to search for the effective enzyme cocktails degrading hemp lignin during the pretreatment process. In total, 169 and 155 proteins were identified in Pleurotus eryngii and Pleurotus ostreatus, respectively, and 50% of the proteins involved in lignocellulose degradation were CAZymes. Because most of the extracellular proteins secreted by fungi are glycosylated proteins, the N-linked glycosylation of enzymes could be mapped. In total, 27 and 24 N-glycosylated peptides were detected in Pleurotus eryngii and Pleurotus ostreatus secretomes, respectively. N-Glycosylated peptides of laccase, GH92, exoglucanase, phenol oxidase, α-galactosidase, carboxylic ester hydrolase, and pectin lyase were identified. Deglycosylation could decrease enzymatic saccharification of hemp stalks. The activities of laccase, α-galactosidase, and phenol oxidase and the thermal stability of laccase were reduced after deglycosylation. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.9b00061 |